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Abstract

Hafner and McCurley described a subexponential time algorithm to compute the ideal class
group of a quadratic field, which was generalized to families of fixed degree number fields by
Buchman. The main ingredient of this method is a subexponential time algorithm to derive
relations between primes of norm bounded by a subexponential value. Besides ideal class
group computation, this was successfully used to evaluate isogenies, compute endomorphism
rings, solve the discrete logarithm problem in the class group and find a generator of a principal
ideal. In this paper, we present a generalization of the relation search to classes of number
fields with degree growing to infinity.

1 Introduction

Let K = Q(θ) be a number field of degree n and maximal order OK , a be an ideal of an order
O ⊆ OK , and a bound B > 0. We consider the problem of finding a relation of the form

a = (φ)p1 · · · pk (1)

where the (pi)i≤k are prime ideals of O with N (pi) ≤ B and φ ∈ O. This means that if [a] is the
class of a fractional ideal a in Cl(O), then [a] =

∏
i[pi]. In the rest of the document we identify a

and [a] when there is no ambiguity.
Relations in Cl(Z[θ]) for a well chosen θ can be used to factor large numbers or solving the

discrete logarithm problem via the number field sieve algorithm [23]. In the case of an arbitrary
O ⊆ OK , one can deduce the class group and the unit group of O from a generating set of all
relations between prime ideals with N (pi) ≤ B for a large enough B. Relations of the form (1)
can also be used to solve the discrete logarithm problem in Cl(O) (where a is the challenge) or
to test if an ideal a ⊆ O is principal. Very few cryptosystems rely on the hardness of the discrete
logarithm problem in Cl(O), but it can be shown that this is at least as hard as factoring large
integers. In addition, there is no known reduction between the discrete logarithm in the Jacobian
of a curve and in Cl(O). Therefore, this is a viable alternative to the cryptosystems currently
used. On the other hand, many homomorphic schemes rely on the hardness of finding a generator
of a principal ideal. Finally, when K is a CM field, an isogeny between isomorphism classes of
Abelian varieties with complex multiplication by O can be expressed as the composition of lower
degree isogenies from relations of the form (1), thus enhancing its evaluation, which has a lot of
cryptographic applications including point counting and transporting the discrete logarithm from
the Jacobian of a curve to another group.

Buchmann [6] generalized a result of Hafner and McCurley [16] to prove that the ideal class
group and the unit group of the maximal order of classes of number fields of fixed degree and
discriminant ∆ growing to infinity could be computed in time L∆(1/2, c) where c > 0 is a constant
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and L∆(a, b) := eb log |∆|a log log |∆|1−a . His proof relies on the capacity to derive relations of the
form (1) for B = L∆(1/2, c1) in time L∆(1/2, c2) for constants c1, c2 > 0. For classes of number
fields of degree n growing to infinity, no such result was known until Biasse [2] showed that the
class group and the unit group of the equation order Z[θ] could be computed in time L∆(1/3, c)
for some c > 0 in certain classes of number fields where the degree and the height of the defining
polynomial of the field grow in certain proportions.

Our contribution is to extend the result of [2] to prove that one can derive relations of the
form (1) for B = L∆(α, c1) in time L∆(α, c2) for constants c1, c2 > 0 and 0 < α < 1 in any order
Z[θ] ⊆ O ⊆ OK in classes of number fields satisfying restrictions generalizing those described
in [2]. We discuss the applications of our relation search algorithm to the computation of Cl(O),
the resolution of the discrete logarithm problem in Cl(O), the computation of the generator of a
principal ideal a ⊆ O, and the relation search in the polarized class group C(O).

Theorem (Main result). Let O be an order in a degree n number field Q(θ), ∆ = disc(O), B > 0,
and a ⊆ O an ideal. Then, under the Generalized Riemann Hypothesis (GRH) and Heuristic 1
there is an algorithm that returns a B-smooth decomposition in time

log (N (a))1+o(1) L∆(α, c1) where B = L∆(α, c2) for some c1, c2 > 0.

The value of α is

• α = 2/3 + ε for ε arbitrarily small in the general case.

• α = 1/2 when n ≤ log(|∆|)3/4−ε for ε arbitrarily small.

• α = 1/3 when n ∼ log(|∆|)1/3 (in this case ∆ = disc(Z[θ])).

2 Finding relations when n→∞

In this section, we present the general idea of our method for deriving relations in Cl(O) where
O is an order in a degree n number field K. Given a smoothness bound B > 0 and a ⊆ O, we
want to find products of the form a = (φ)p1 · · · pk, where α ∈ O and (pi) are prime ideals of O
with N (pi) ≤ B. We want our method to run in subexponential time L∆(α, c1) for some c1 > 0
and 0 < α < 1 when B is a subexponential bound. Here ∆ is the discriminant of the defining
polynomial of K and the subexponential function is given by

L∆(α, c) := ec log(|∆|)α log log(|∆|)1−α .

One way of finding relations between ideals in Cl(O) is to enumerate random B-smooth ideals in
O (which means that they are power products of prime ideals of norm bounded by B) until one
is equivalent to another B-smooth ideal (this test usually involves reducing it first, as explained
in Section 2.2). The other typical method to find relations is to enumerate elements φ ∈ O until
the principal ideal it generates is B-smooth. In one case, it is the probability of the smoothness
of an ideal which rules the run time of an algorithm, and in the other case, it is the probability
of smoothness of an element, which is much less understood, in particular due to the units of O.

2.1 Smoothness of ideals

Our complexity analysis relies on a heuristic on the smoothness of ideals. To justify it, we rely
on two separate observations. First, in [28], Scourfield established a result on the smoothness of
ideals in a number field comparable to the ones known on integers. Let

Ψ(x, y) := |{a ⊆ OK ,N (a) ≤ x, a y − smooth}| ,
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and ε > 0, then Ψ(x, y)/x ∼ λKρ(u), where u = log(x)/ log(y), ρ is the Dickman function, λK is
the residue of the zeta function ζK(s) at s = 1 and

(log log(x))
5
3

+ε ≤ log(y) ≤ log(x), x ≥ x0(ε)

for some x0(ε). Unfortunately, we do not know if this remains true when we restrict ourselves
to principal ideals. This is one of the reasons why the complexity of the number field sieve [23]
(NFS) in only heuristic. Scourfield’s result is the motivation for the specific form of the probability
function described in Heuristic 1. In addition to that, we require a stronger smoothness assumption
to perform our q descent that is sketched in Section 2.3 and fully described in Section 3. Indeed, we
want the primes in our decomposition to be of inertia degree 1, that is of the form pO+(θ−vp)O,
where vp is a root of T (X) mod p. In general, prime ideals can have inertia degree f ≥ 2 and
thus be of the form pO + Tp(θ)O where deg(Tp) = f . However, their proportion is low when
B = L∆(α, c) for some 0 < α < 1 and c > 0. For 2 ≤ f ≤ n, we have

#
{
p prime | pf ≤ B

}
∼ fB1/f

logB
.

The proportion of primes whose f -th power for 2 ≤ f ≤ n is below the smoothness bound B with
respect to the primes bounded by B thus equals

1

π(B)

∑
2≤f≤n

fB1/f

logB
=

∑
2≤f≤n

1

L∆(α, c− c/f + o(1))
≤ 1

L∆(α, c/2 + o(1))
,

since n is polynomial in log |∆|. This justifies that the proportion of inertia degree 1 prime ideals
is asymptotically dominant, and in Heuristic 1 we assume that the smoothness probability with
respect to these ideals only is asymptotically the same as the smoothness with respect to all ideals.

Heuristic 1. We assume that under GRH, the probability P (ι, µ) that a principal ideal of O of
norm bounded by eι is is a power-product of inertia degree 1 primes ideals of norm bounded by
eµ satisfies

P (ι, µ) ≥ e(−u log u(1+o(1))), (2)

for u = ι/µ.

Corollary 2.1. Let

ι = blogL∆(ζ, c)c =
⌊
c (log |∆|)ζ (log log |∆|)1−ζ

⌋
µ = dlogL∆(β, d)e =

⌈
d (log |∆|)β (log log |∆|)1−β

⌉
,

then assuming Heuristic 1, we have

P (ι, µ) ≥ L∆

(
ζ − β, −c

d
(ζ − β) + o(1)

)
.

2.2 The BKZ-reduction

Given an ideal a ⊆ O and B > 0, the classic method derived from [6, 16] to produce a relation of
the form a = (φ)pe11 , . . . , p

eN
N consists of choosing B = {p | N (p) ≤ B} where B ≤ L∆(1/2, O(1))

and testing random ideals of the form a ·
∏
i p
ei
i where N (pi) ≤ 48(log(|∆|))2 and and ei ≤ |∆|

for B-smoothness in Cl(O). Indeed, under the GRH, the classes of ideals of norm less than
48(log(|∆|))2 generate the class group whose size is bounded by |∆|. A reduction precedes the
test for smoothness of a power product of ideals a ·

∏
i p
ei
i to find an ideal b ⊆ O in the same
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equivalence class as a′ := a ·
∏
i p
ei
i with a reasonably bounded norm. It is done by finding a short

element φ ∈ c where a′−1 = 1
l c with l ∈ Zl>0 and c ⊆ O. Such a short element satisfies

‖φ‖ ≤ λO|∆|
1
2nN (c)

1
n ,

where λO is an approximation factor depending on the reduction method that we use. With the
LLL algorithm, we have λO = 2n/2 achieved in polynomial time in n. Then, the ideal b := φ

l a
′

satisfies N (b) ≤ λnO
√
|∆| and is in the same class as a′ in Cl(O). We try to decompose b

over B, that satisfies log(N (b)) ≤ O (log(|∆|)) in the case where n is fixed. This bound allows
us to decompose b over primes of norm bounded by B ≤ L∆(1/2, O(1)) in time bounded by
L∆(1/2, O(1)). Then, a decomposition of a in Cl(O) naturally follows.

For classes of number fields for which n → ∞, we have in general n ≤ log(|∆|). To have a
subexponential algorithm for computing Cl(O) (and solving related problems in Cl(O)), we need
to be able to find B-smooth relations in subexponential time for some subexponential bound B.
In particular, if B = L∆(α, c) for some 0 < α < 1 and c > 0, then according to Corollary 2.1,
the expected time to find a B-smooth ideal arising from the LLL-reduction of some a ⊆ O is
bounded by L∆(2−α, d) for some d > 0 since the norm of the LLL-reduced ideals is bounded by
2n

2/2
√
|∆| ≤ L∆(2, e) for some e > 0. This leaves no chance to calculate Cl(O) in subexponential

time.
However, the BKZ-reduction [27] offers the possibility of a trade-off between the time spent in

the reduction and the approximation factor λO. It depends on a parameter k and allows to find
a approximate short vector with λO = k

n
2k in time 2O(k) × P (n) where P is a polynomial. This

way, given an ideal a ⊆ O, we can find b in the same equivalence class as a in Cl(O) that satisfies

N (b) ≤ k
n2

2k

√
|∆| in time 2O(k) and polynomial in n. In the general case, n ≤ log(|∆|), and by

choosing k = log(|∆|)2/3 log log(|∆|)1/3, the expected number of BKZk-reduced b that we need to
draw to find one that is L∆(2/3, O(1))-smooth is in L∆(2/3+ε,O(1)) for any arbitrary small ε > 0.
This can lead to an L∆(2/3 + ε) algorithm to compute Cl(O). When n ≤ log(|∆|)3/4−ε for ε > 0,
we even find ideals b with N (b) ≤ |∆|O(1) in the same equivalence class as a in time 2log(|∆|)1/2 thus
allowing to find L∆(1/2, c1)-smooth relations in time L∆(1/2, c2) for some constants c1, c2 > 0,
which generalizes Buchmann’s result [6] to some classes of large degree number fields.

Algorithm 1 BKZ reduction
Require: An ideal a ⊆ O, and k ≥ 1.
Ensure: b ⊆ O and φ ∈ K with N (b) ≤ k

n2

2k

√
|∆|, where b = (φ)a, n = dim(O) and ∆ =

disc(O).
1: c← la−1 where l is the denominator of a.
2: Find a BKZk-reduced γ ∈ c.
3: b← γ

l a.
4: return b, γl .

Proposition 2.2. Let a ⊆ O be an ideal in an order of a degree n number field and k ≥ 1, then
the complexity of the BKZ reduction given by Algorithm 1 is in

O
(

2O(k) Poly(n) log (N (a))1+o(1)
)
.

Proof. This is a direct application of the BKZ reduction with parameter k to the Z-basis of c. Its
complexity is in O

(
2O(k) Poly(n)B1+o(1)

)
, where B is a bound on the bit size of the matrix of the

vectors of the Z-basis of c. We assume that the Z-basis of an ideal is given in its Hermite Normal
Form, which means that B ≤ log(N (c)), As l ≤ N (a), we have

log(N (c)) = log
(
N
(
la−1

))
≤ log

(
N (an−1)

)
≤ n log(N (a)).

The statement follows directly.
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2.3 The q-descent

The generalization of Buchmann’s method together with a BKZ-reduction can only yield an
L∆(1/2) algorithm for computing Cl(O) and solving related problems. Indeed, no matter how
small the approximation factor λO is, the norm of the reduced ideal cannot have a tighter bound
than |∆|O(1). The idea of the q-descent derives from the algorithms based on the number field
sieve [23] to solve the discrete logarithm problem in time Lq(1/3) in Fq (see in particular [1, 15, 21]).
Our method is directly inspired by the analogue for Cab curves presented in [12].

According to Corollary 2.1, if one only wants to spend a time bounded by L∆(1/3, c1) on the
decomposition of an ideal (principal or not, given Heuristic 1) of norm bounded by L∆(α, c2) for
some 0 < α < 1 and c1, c2 > 0, the final decomposition will be L∆(α − 1/3, c3)-smooth for some
c3 > 0. To allow an L∆(1/3, d) algorithm to compute Cl(O), we need to compute L∆(1/3, c3)-
smooth relations in time L∆(1/3, d) for some c3, d > 0. However, when we draw reduced ideals
b ⊆ O, we usually do not have α = 2/3.

For the q-descent algorithm, we restrict ourselves to the classes of orders satisfying n ∼
log(|∆|)1/3. Given an ideal a ⊆ O, we can easily find a |∆|-smooth ideal b ⊆ O equivalent to
a in Cl(O) (with a BKZ reduction for example). Then, we find short elements φ ∈ q for every
q | b. This search is designed to take a subexponential time bounded by L∆(1/3, c1) for some
c1 > 0. It can be shown that we can find enough short φ ∈ q to obtain one for which (φ)/q
is L∆(1/3 + τ/2, c2)-smooth for some c2 > 0 and τ = 2/3. The process is repeated with the
new decomposition, going from a L∆(1/3 + τ/2i)-smooth decomposition to a L∆(1/3 + τ/2i+1)-
smooth decomposition until the last jump to a L∆(1/3)-smooth decomposition can be done in
time L∆(1/3).

3 Subexponential time decomposition algorithms

In this section, we describe algorithms for the decomposition in Cl(O) of a given ideal a ⊆ O over
ideals of norm bounded by a given B > 0. We present an algorithm relying on BKZ-reductions
with subexponential complexity on any infinite class of orders and a q-descent algorithm working
on restricted classes. Given an ideal a, the latter allows us to compute an L∆(1/3, c1)-smooth
decomposition of a in heuristic expected time L∆(1/3, c2) in some classes of orders O in number
fields K = Q(θ) = Q[X]/T (X) for ∆ = disc(O) and some c1, c2. These classes are parametrized
by constants n0, d0 > 0. Let T (X) = tnX

n + tn−1X
n−1 + . . .+ t0 ∈ Z[X], n := [K : Q] and d be

a bound on the size of the coefficients of T , that is d := logHT , where HT := maxi |ti|. We say
that the order O in the number field K belongs to Cn0,d0 if

n = n0 log (|∆|)1/3 (1 + o(1)) (3)

d = d0 log (|∆|)2/3 (1 + o(1)). (4)

In the rest of the paper, we will use κ := n0d0 in the expression of the complexities. We refer
to [2] for examples of such classes of number field.

3.1 BKZ reduction of random ideals

When we substitute the LLL reduction with the BKZ reduction in the classical subexponential
algorithms of Buchmann and Hafner-McCurley [6, 16], we obtain a subexponential time decompo-
sition algorithm in arbitrary classes of number fields of degree growing to infinity (unlike with the
q-descent on which restrictions apply). The BKZ-reduction of an ideal is given by Algorithm 1.
We describe how to use it to decompose ideals in Algorithm 2 which depends on a parameter
ε > 0 to be adjusted according to the desired asymptotic complexity, which is discussed in Propo-
sition 3.1. Before the q-descent, we use a modified version of Algorithm 2 to obtain a |∆|-smooth
decomposition with certain properties. We present this in Algorithm 3.
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Algorithm 2 Ideal decomposition with the BKZ-reduction
Require: Ideal a, ε > 0 and B > 0.
Ensure: Primes qi with N (qi) ≤ B, φ ∈ K such that a = (φ) ·

∏
i qi.

1: k ← log(|∆|)ε.
2: a← (φ1)a where φ1 is the output of Algorithm 1 on (a, k).
3: found← false
4: while found = false do
5: Let q1, . . . , qN be random prime ideals with N (qi) ≤ 48 log(|∆|)2.
6: a′ ← (φi) · a

∏
i q
−1
i where φ2 is the output of Algorithm 1 on (a ·

∏
i q
−1
i , k).

7: if a′ is B-smooth then
8: found← true
9: Let β and (pj) such that a′ = (β)

∏
j pj .

10: end if
11: end while
12:
13: return {(qi)i≤N , (pj)}, φ1 · φ2 · β

Proposition 3.1 (GRH-Heuristic 1). Let O an order in a degree n number field, ∆ = disc(O),
B > 0, and a ⊆ O an ideal. Then Algorithm 2 returns a B-smooth decomposition in time

log (N (a))1+o(1) L∆(α, c1) where B = L∆(α, c2) for some c1, c2 > 0.

The value of α is

• α = 2/3 + ε for ε arbitrarily small in the general case.

• α = 1/2 when n ≤ log(|∆|)3/4−ε for ε arbitrarily small.

Proof. Following the discussion of Section 2.2, the reduced ideals b that we test for smoothness sat-
isfyN (b) ≤ e

n2

2k
log(k)

√
|∆|, and each reduction step has a cost bounded byO

(
2O(k) log (N (a))1+o(1) Poly(n)

)
.

In the general case, we choose k = log |∆|2/3. In this case, the reduced ideals b tested for smooth-
ness satisfy

log (N (b)) ≤ n2

2k
log(k)(1 + o(1))

≤ O(log(|∆|)4/3 log log(|∆|)(1 + o(1)))

� O(log(|∆|)4/3+ε log log(|∆|)−2/3(1 + o(1)))

for some arbitrarily small ε > 0. According to Corollary 2.1, the expected number of b to test
to find one that is L∆(2/3 + ε, c1)-smooth for some c1 > 0 is bounded by L∆(2/3, c2) for some
c2 > 0.

When n ≤ log(|∆|)3/4−ε for some ε > 0, we choose k = log(|∆|)1/2−2ε log log(|∆|). In this
case, the reduction step has a cost bounded by log (N (a))1+o(1) L∆(1/2, c1) for some c1 > 0, and
the reduced ideals b that we test for smoothness satisfy

log (N (b)) ≤ n2

2k
log(k)(1 + o(1))

≤ O

(
log(|∆|)3/2−2ε

log(|∆|)1/2−2ε log log(|∆|)
log log(|∆|)(1 + o(1))

)
≤ O(log(|∆|)(1 + o(1)))

Then according to Corollary 2.1, the expected number of b to test to find one that is L∆(1/2, c1)-
smooth for some c1 > 0 is bounded by L∆(1/2, c2) for some c2 > 0.
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A modified version of Algorithm 2 needs to be called before starting the q-descent (which is
described in Section 3.2) to decompose the ideal a in Cl(O) as a power-product of inertia degree
1 prime ideals of norm bounded by |∆|. We describe this procedure in Algorithm 3 and analyze
it in Lemma 3.2.

Lemma 3.2 (GRH-Heuristic 1). Let a be an ideal in an order O of a number field K in Cn0,d0

for some n0, d0, then we can decompose [a] over the classes of prime ideals of the form

q = qO + (θ − vq)O,

where vq ∈ Z and N (q) ≤ |∆|, in expected time bounded by L∆(1/3, o(1)).

Proof. We apply the same procedure as in Algorithm 2 with the parameter k = log(|∆|)1/3−ε for
an arbitrarily small ε > 0. This way, the reduced ideals b satisfy N (b) ≤ |∆|O(1) and are derived
in time L∆(1/3, o(1)). According to Corollary 2.1, only L∆(1/3, o(1)) of them need to be drawn
until one which is |∆|-smooth is found, and under Heuristic 1, we can assume this decomposition
to only include prime ideals of inertia degree 1.

Algorithm 3 First decomposition
Require: Ideal a
Ensure: Primes qi of inertia degree 1 and φ ∈ K such that a = (φ)

∏
i qi.

1: k ← log(|∆|)ε.
2: a← (φ1)a where φ1 is the output of Algorithm 1 on (a, k).
3: found← false
4: while found = false do
5: (qi)i≤N ← random inertia degree 1 prime ideals with N (qi) ≤ 48 log(|∆|)2.
6: a′ ← (φi) · a

∏
i q
−1
i where φ2 is the output of Algorithm 1 on (a ·

∏
i q
−1
i , k).

7: if a′ is |∆|-smooth with respect to the prime ideals of inertia degree 1 then
8: found← true
9: Let β and (pj) such that a′ = (β)

∏
j pj .

10: end if
11: end while
12: return {(qi)i≤N , (pj)}, φ1 · φ2 · β

3.2 Analysis of the q-descent algorithm

In this section, we assume we are looking for relations in an order O ∈ Cn0,d0 for some n0, d0.
Once the first decomposition is done, the prime ideals occurring in the decomposition of a are
recursively decomposed as power-products of prime ideals of lower norm. For that, we enumerate
elements φ ∈ q = qO + (θ − vq)O of the form φ = A(θ) until one is smooth.

Theorem 3.3 (GRH-Heuristic 1). We can find a B-smooth ideal equivalent to any ideal a of
O ∈ Cn0,d0 for some n0, d0 in time

L∆(1/3, b+ ε),

with b = 3

√
24κ
9 and any ε > 0.

Proof. Let a be an ideal of O. From Lemma 3.2, we know how to find a′ equivalent to a that splits
over the prime ideals of the form q = qO+(θ−vq)O and of norm bounded in O(|∆|). We proceed
recursively, starting from the primes of the first decomposition. At each stage, q = qO+ (θ− v)O
is an ideal of norm bounded by L∆(1/3 + τ, c) for some c > 0 and 0 ≤ τ ≤ 2/3. At the beginning
we have τ = 2/3 and c = 1. We search φ ∈ q such that (φ)/q is L∆(1/3 + τ/2, c′)-smooth for a
c′ depending on c. Such a φ satisfies q | (φ) and thus [q] can be decomposed as a power product
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of classes of prime ideals involved in the decomposition of (φ). We repeat this process until we
obtain a decomposition involving only classes of elements of B. At each stage, we consider the φ
belonging to the lattice of polynomials in θ of degree bounded by

k :=

⌊
σ

n

(log |∆|/ log log |∆)1/3−τ/2

⌋
,

where σ > 0 is a constant to be determined later. These φ form a Z-lattice generated by

(v0, θ − v1, . . . , θ
k − vk),

with v0 = q and vi = viq mod q for i ≥ 1. We want to spend the same time L∆(1/3, e+ o(1)) at
each smoothing step for e > 0 to be optimized later. The search space has to be of the same size.
We thus look for L∆(1/3, e+o(1)) distinct (k+1)-tuples (α1, . . . , αk+1) ∈ Zk+1. Using Lemma 3.4,
for every integer z, we can find ekz such tuples satisfying log |αi| ≤ D/k + z for i ≤ k + 1 and
log |

∑
i αivi| ≤ D/k + z. We adjust the value of z to make sure that all the L∆(1/3, e + o(1))

tuples obtained during the search phase satisfy this property by solving ekz = L∆(1/3, e+ o(1)).
This yields

z =
1

n
logL∆(2/3− τ/2, e/σ + o(1)).

From [2, Lem. 2], log(N (φ)) ≤ n(D/k + z) + dk + d log(k) + k log(n), therefore

N (φ) ≤ L∆(2/3 + τ/2, (c+ e)/σ + o(1)).

Let q′ be the ideal such that (φ) = q · q′. Its norm is also bounded:

N (q′) ≤ L∆(2/3 + τ/2, (c+ e)/σ + o(1)).

From Heuristic 1 and Corollary 2.1 we expect to find at least one L∆(1/3 + τ/2, c′)-smooth q′ for

c′ =
1

3e
((c+ e)/σ + σκ).

Once this is achieved, we can write q = (φ)q′−1, thus rewriting [q] as a power product of classes
of prime ideals of norm bounded by L∆(1/3 + τ/2, c′). The value of c′ is minimized by σ =√

(c+ e)/κ, which yields

c′ =
2
√
κ

3e

√
c+ e.

Starting with τ0 = 2/3 and c0 = 1, we obtain a power-product of prime ideals of norm bounded
by L∆(1/3 + τ1, c1) with τ1 = 1/3 and c1 = 2

√
κ(c0 + e)/3e. After i steps, we get an ideal which

is L∆(1/3 + 1/(3 · 2i−1), ci) = L∆(1/3, ci · M
1

3·2i−1 )-smooth, where

τi =
1

3 · 2i−1
, ci =

2
√
κ

3e

√
ci−1 + e, M =

(
log(|∆|)

log log(|∆|)

)
.

The sequence ci converges to a finite limit c∞ given by

c∞ = χ/2
(
χ+

√
χ2 + 4e

)
,

where χ = 2
√
κ/3e. Let ξ > 0 be an arbitrary constant. After a number of steps only depending

on e, κ and ξ, we have ci < c∞(1 + ξ), and after O(log log |∆|) stepsM
1

3·2i−1 < (1 + ξ). We can
thus decompose [a′] as a power-product of classes of prime ideals of norm bounded by

L∆(1/3, c∞(1 + ξ)).

8



At each step, the decomposition involves O(log |∆|) ideals, and we need to perform O (log log |∆|)
steps. Indeed, we want to decompose [a′] as a power product of classes of prime ideals of norm
bounded by L∆(1/3, ρ) for some ρ > 0. Let us compute the effort to reach c∞(1 + ξ) = ρ. As in
[12, Th. 8], we write 9e3 = Eκ with E to be determined later. The equation ρ = c∞ simplifies as(

3

E

)1/3

=
2

E
(1 +

√
1 + E).

The least non negative solution E0 satisfies E0 = 24, which yields

e =
3

√
24κ

9
=: b.

Algorithm 4 q-descent
Require: Ideal a, B = {p1, . . . , pN}
Ensure: Primes (qi)i≤l ∈ B, integers (ei) and (φj)j≤k ∈ K such that a =

∏
j≤k(φj) ·

∏
i≤l q

ei
i

1: Find prime ideals (qi)i≤l of norm bounded by |∆| and φ1 with a = (φ)·
∏
i qi using Algorithm 3

2: genList← [φ1], primeList← [q1, . . . , ql], expList← [1, · · · , 1].
3: while there is q /∈ B in the decomposition of [a] do
4: Find (qi)i≤l, (ei)i≤l and φk such that q = (φk)

∏
i≤l q

ei
i as in Theorem 3.3

5: genList← genList ∪ [φk], primeList← primeList ∪ [q1, . . . , ql].
6: expList← expList ∪ [e1, · · · , el].
7: end while
8: return genList, primeList, expList.

3.3 Finding short elements in q

In Algorithm 4 described in Section 3.2, we draw elements φ ∈ q = qO+(θ−vq)O in the Z-lattice
generated by (v0, θ−v1, . . . , θ

k−vk) where v0 = q and vi = viq mod q. In the proof of Theorem 3.3
we rely on the fact that there are sufficiently many small elements in a bounded hypercube of this
lattice. Note that in section again, O ∈ Cn0,d0 for some n0, d0.

Lemma 3.4. Let σ, τ, c > 0, and some integers D and k defined by

k :=

⌊
σ

n

(log |∆|/ log log |∆|)1/3−τ/2

⌋
, D := log (L∆(1/3 + τ, c)) .

Let v1, . . . , vk+1 be integers satisfying log |vi| ≤ D. Then, for any integer z, there exist at least
ekz tuples (α1, . . . , αk+1) ∈ Zk+1 satisfying

log |αi| ≤ D/k + z

log

∣∣∣∣∣∑
i

αivi

∣∣∣∣∣ ≤ D/k + z.

Proof. Let us define the k + 1 dimensional lattice Λ generated by the rows of

A :=


1 0 . . . 0 v1

0 1
. . .

...
...

...
. . . . . . 0

...
0 . . . 0 1 vk+1

 .
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For any element x ∈ Λ, there exists (α1, . . . , αk+1) ∈ Zk+1 such that

x =

(
α1, . . . , αk+1,

∑
i

αivi

)
.

The determinant d(Λ) of Λ satisfies

d(Λ) =
√

det (AAT ) =

√ ∑
i≤k+1

vi +
∑
i≤k+1

vivk+1−i ≤
(√

2k + 1
)
eD.

Let X ⊂ Rk+2 be the symmetric and convex set of points defined by

X = {(x1, . . . , xk+2) | ∀i |xi| ≤ D/k + z} .

The volume V (X) equals 2k+2e(k+2)(D/k+z), and from Theorem II of III.2.2 in [10] we know that
if

V (X) > m2k+2d(Λ),

then X intersect Λ in at least m pairs of points ±x ∈ Rk+2. It thus suffices to prove that

ekz <
e(k+2)(D

k
+z)

√
2k + 1eD

= ekz.
e2D

k
+2z

√
2k + 1

,

which is satisfied since

D

k
=
c

σ
log |∆|2/3−α+τ/2 log log |∆|1/3−τ/2 � log(2k + 1).

These short vectors need to be found via an enumeration algorithm of short vectors. This
is exponential in the dimension of the lattice, which itself is bounded by n. We use the method
described in [17] to perform this search.

Proposition 3.5. The search for the solution of the vectors solution to the restrictions described
in Lemma 3.4 takes time bounded by L∆(1/3, e+ o(1)).

Proof. Enumerating vectors of length bounded by A = eD/k+z with [17, Alg. 10] takes

2O(k) Ak

kk/2d(Λ)
≤ 2O(k) e

D+kz

kk/2eD
≤ 2O(k)L∆(1/3, e+ o(1)).

Furthermore, since k ∼ log(|∆|)1/3−ε for some ε > 0, we have 2O(k) = L∆(1/3, o(1)) which
concludes the proof.

4 Applications

An important motivation for finding relations in Cl(O) where O is an order in a number field is
the computation of the structure of Cl(O) and of a system of fundamental units of O. This is
an essential task in computational number theory. It allows us in particular to provide numerical
evidence in favor of unproven conjectures such as the heuristics of Cohen and Lenstra [11] on
the ideal class group of a quadratic number field, Littlewood’s bounds [24] on L(1, χ), or Bach’s
bound on the minimal B such that ideals of norm at most B generate the ideal class group.
These methods can also be used to solve Diophantine equations. For example, the computation
of the fundamental unit of a number field is equivalent to solving the Pell equation T 2 −∆U2 =
1, T, U ∈ Z, associated to the discriminant ∆ of the field in question (see [19]). Other Diophantine
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equations such as the Schäffer equation y2 = 1k + 2k + . . .+ (x− 1)k, k ≥ 2, can be solved using
solutions to the Pell equation [18] , which is itself a special case of norm equations of the form
N (φ) = 1.

The subexponential method for computing Cl(O) and a system of fundamental units of O
shares a lot of similarities with algorithms with cryptographic relevance. For example, rewriting
the class of a given ideal a ⊆ O as the class of a power product of prime ideals of short norm
can be used to solve the discrete logarithm problem in Cl(O). Although not used in practice,
cryptosystems relying on the hardness of the discrete logarithm problem in Cl(O) [9, 8, 4, 7, 26]
may be a viable alternative to schemes relying on the hardness of factorization or of the discrete
logarithm in other groups. More recently, after Gentry described the first fully homomorphic
encryption scheme [13, 14], finding short vectors in ideal lattices became an essential topic in public
key cryptography. In particular, finding a short generator of a principal ideal (for ‖

∑
i xiθ

i‖∞ :=
maxi |xi| ) allows to break some variations of Gentry’s scheme (for example, the cryptosystem of
Vercauteren and Smart [29]). We show in Section 4.3 how our relation generation method applies
to this problem. Finally, decomposing the class of an ideal into a power-product of ideals of smaller
norm applies to the evaluation of the action of Cl(O) on curves having complex multiplication by
O, as shown by Jao in the case of elliptic curves [20].

4.1 Class group and unit group computation of O

The subexponential method due to Buchmann [6] is a generalization of the algorithm of Hafner
and McCurley [16] for quadratic number fields, and its complexity is subexponential bounded by
L∆(1/2, c) for some c > 0 for classes of number fields with fixed degree. Let B = {p1, · · · , pN} be
a set of prime ideals of O whose classes generate Cl(O). We have a surjective morphism

ZN ϕ−−−−→ I π−−−−→ Cl(O)

(e1, . . . , eN ) −−−−→
∏
i p
ei
i −−−−→

∏
i[pi]

ei
,

and the class group is given by Cl(O) ' ZN/ ker(π ◦ ϕ). Therefore, computing the class group
boils down to computing ker(π ◦ ϕ), which is given by the lattice of (e1, ..., eN ) ∈ ZN such that

pe11 , . . . , p
eN
N = (φ),

where φ ∈ O. We collect many relations of the form
∏
i p
e
(j)
i
i = (φj) and put them in the rows of

the relation matrix M := (e
(j)
i ). Once the rows of M generate the lattice of all the relation, the

quotient ZN/ ker(π ◦ ϕ) is derived from the Smith Normal Form (SNF) of this M . Meanwhile,
every vector X := (x1, · · · , xN ) of the left kernel of M yields a unit

γX := αx11 · · ·α
xN
N ,

since the principal ideals that it generates satisfies

(γX) = p
∑
i xie

(1)
i

1 · · · p
∑
i xie

(N)
i

N = p0
1 · · · p0

N = (1) = O.

This allows us to iteratively compute the unit group U by finding kernel vectors of the relation
matrixM . We give a high-level description of the computation of Cl(O) and U(O) in Algorithm 5.

Computing relations between ideals of B is an essential ingredient of Algorithm 5. From the
properties of the subexponential function, if one can find a L∆(α, c1)-smooth relation in time
L∆(α, c2) for some 0 < α < 1, then the time to find L∆(α, c1 + o(1)) relations (which bounds the
size of the factor base |B|) is bounded by L∆(α, c1 + c2 + o(1)). By BKZ-reducing random power
products of elements in B with Algorithm 1, we can achieve an L∆(2/3 + ε, c1) algorithm to find
|B| relations in the general case and an L∆(1/2, c2) algorithm when n ≤ log(|∆|)3/4−ε′ for some
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Algorithm 5 Class group and unit group of O
Require: O, K, B = {p ⊆ O | N (p) ≤ B} that generates Cl(O).
Ensure: Class group and unit group of O.
1: Derive a generating set of the relations in Cl(O) between elements of B.
2: Let M be the matrix of a basis for the Z-lattice L of the relations.
3: Compute Cl(O) from the SNF of M .
4: for Xi ∈ ker(M) do
5: Let γi be the unit corresponding to Xi.
6: end for
7: Find U(O) from the (γi).

c1, c2 > 0 and arbitrarily small ε, ε′ > 0. By performing a q-descent on random power-products of
elements in B, we even achieve an L∆(1/3, c3) algorithm to find |B| relations when n ∼ log(|∆|)1/3.
However, more work needs to be done to state that this allows subexponential methods of the
computation of the class group and unit group of O. The randomization of the relation needs to
be addressed, and will most likely rely on some heuristics as it is the case in [2]. In addition, a
careful analysis of the computation of the unit group also has to be done. It needs to take into
account the precision of the representation of the units that is chosen. In [2], they are vectors
of fixed point approximations of Archimedian valuations while in [3] their p-adic approximations
were used.

4.2 Discrete logarithm in Cl(O)

Calculating the group structure of Cl(O) allows to solve the discrete logarithm problem between
two ideals a and b in Cl(O) by decomposing them as a power-product of the generators of Cl(O),
either by the means of a q-descent or by multiplying them by random power-products or small
ideals and testing them for smoothness.

Solving the discrete logarithm problem in Cl(O) can also be done without the knowledge of the
structure of Cl(O), as described by Vollmer [30]. Given two ideals a and b, we wish to compute
x such that [b] = [a]x. We enlarge the factor base with a and b and let B′ = B ∪ {a, b}. Then
we use the methods of either Algorithm 2 or Algorithm 4 to find a relation matrix M ∈ ZN ′×N
whose rows generate the possible relations between elements of B and to decompose [a] and [b]
over classes of elements in B, thus creating two extra relations over B′

pe11 . . . peNN a = (φa), pf11 . . . pfNN b = (φb). (5)

Let ~va := (e1, . . . , eN ) and ~vb := (f1, . . . , fN ). Let X ∈ ZN ′+2 be a solution to the system XA = ~v
where

A :=


M (0)

~vb 1
~va 0

 and ~v = (0, . . . , 0, 1).

Then, with the same definition of the (φi)i≤N ′ as for the computation of Cl(O), we have∏
i≤N ′

(φi)
xi · (φa)xN′+1 · (φb)xN′+2 = p0

1 · · · p0
N · a · bxN′+2 ,

which solves the discrete logarithm problem. We summarize in Algorithm 6 the algorithms for
solving the discrete logarithm problem given [a] and [b] in Cl(O).
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Algorithm 6 Discrete logarithm algorithm
Require: Ideals a and b such that there exists x ∈ Z satisfying [b] = [a]x

Ensure: x′ such that [b] = [a]x
′

1: Construct the factor base B = {p1, . . . , pN}
2: Construct M ∈ Z(N ′)×N whose rows span all the relations between the pi ∈ B.
3: ~va ← (e1, . . . , eN ) with [p1]e1 . . . [pN ]eN [a] = (1) using Algorithm 4
4: ~vb ← (f1, . . . , fN ) with [p1]f1 . . . [pN ]fN [b] = (1) using Algorithm 4
5: Solve XA = ~v where

A :=


M (0)

~vb 1
~va 0

 and ~v = (0, . . . , 0, 1).

6: return x′ = −XN ′+2

4.3 Principal ideal problem in O

Now let us study how we can decide whether a given arbitrary ideal a is principal, and if so
compute α such that a = (φ). To this end, we first decompose [a] over B using either Algorithm 2
or Algorithm 4. We obtain a vector b ∈ ZN representing the decomposition of [a] over B. Using
Algorithm 2 or Algorithm 4, we also compute M ∈ ZN ′×N whose rows generate all the possible
relations between elements of B. This means that the vector b belongs to the lattice spanned by
the rows ofM if and only if a is principal. Therefore, solving XM = b allows us to decide whether
a is principal. We summarize in Algorithm 7 the algorithm for solving the principal ideal problem
relatively to an ideal a ⊆ O.

Algorithm 7 Principality testing algorithm
Require: Ideal a ⊆ O.
Ensure: false or (x1, . . . , xg) and (β1, . . . , βg) such that a = (

∏
i β

xi
i )

1: Construct the factor base B = {p1, . . . , pN}
2: Construct M ∈ ZN ′×N whose rows span all the relations between the pi ∈ B.
3: (φ1, · · · , φN ′)← generators of the principal ideals in the relations of M .
4: ~v ← (e1, . . . , eN ) where a = (φ) · pe11 · · · p

eN
N and φ ∈ K using Algorithm 2 or Algorithm 4.

5: Solve XMZ = −→v .
6: return false if no solution or (1, x1, . . . , xN ′) and (φ, φ1, . . . , φN ′).

Computing a generator of a principal ideal directly applies to the cryptanalysis of some homo-
morphic encryption schemes based on ideal lattices such as the one of Vercauteren and Smart [29].
The secret key is a small generator of the principal ideal, which is broadcasted using its Z-basis.
Vercauteren and Smart claim that the subexponential method of Buchmann, which corresponds
to Algorithm 7 is exponential in the degree n of the number field. Using either Algorithm 2 or
Algorithm 4, we can derive a relation matrix and decompose the class of a over the factor base in
subexponential time. The subsequent resolution of a linear system can easily be shown to run in
subexponential time. Therefore, this shows that the security assumption made in [29] about the
principal ideal problem is no longer true. Algorithm 7 allows us to retrieve one of the generators
of a given principal ideal a ⊆ O. If this generator was known to have a small representation
over the Z-basis of O, then the power-product could be evaluated modulo some reasonably sized
primes and recovered by the Chinese Remainder Theorem. Unfortunately, Algorithm 7 does not
necessarily provide us with a small generator. If a = (φ) and U = µ× 〈ε1〉 × · · · × 〈εr〉 is the unit
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group of O, then
∀(e1, · · · , er) ∈ Zr, a = (εe11 , · · · , ε

er
r φ).

When the unit group has rank 1, we find e ∈ Z such that log |φ| − e log |ε| has the desired size.
When U has rank r > 1, let ~vx = (log |x|1, · · · , log |x|r) ∈ Rr be the vector of Archimedian
valuation of x ∈ O. Finding a short generator of a boils down to finding a vector (e1, · · · , er) such
that ‖~φ +

∑
i ei~εi‖2 is small. As the algorithms for solving the shortest vector problem run in

exponential time with respect to the dimension of the lattice, Algorithm 7 does not allow to break
homomorphic encryption schemes, despite the fact that it contradicts the security assumption as
stated in [29].

4.4 Relations in C(O)

The study of isogenies is an important topic in mathematical cryptology. It occurs in particular
in point counting and in the resolution of the discrete logarithm problem. A given Abelian variety
over a finite field q is said to have complex multiplication by an order O in a CM field K if its
endomorphism ring End(V ) is isomorphic to O. In the case of elliptic curves, the class of an ideal
a in Cl(O) acts on isomorphism classes of elliptic curves via a degree-N (a) isogeny. The action
of the class of a is harder to evaluate as N (a) gets large. The method used by Jao [20] to obtain
a subexponential time algorithm was to find a relation a = (φ)p1 · · · pN where N (pi) ≤ B for
a subexponential value B. In general, we only know how to explicitly evaluate isogenies arising
from the action of polarized ideals, that is pairs of the form (a, γ) where aā = (γ), γ ∈ K+ totally
positive and K+ is the totally real subfield of K. We therefore look for relations in the polarized
class group C(O) which is defined as

C(O) := {Polarized ideals of O}/{Principal polarized ideals of O}.

A given relation between ideals of O is unlikely to involve only polarized ideals. However, as
described in Bisson’s doctoral thesis [5], one can send a relation to the reflex field Kr of K via the
type norm map and send it back to K via the reflex type norm map. Ideals arising as the image
of an ideal of Kr via the reflex type norm are polarized. We illustrate this method in Figure 1.

Figure 1: Map between K and Kr

Kc

K Kr

NΦ

NΦr

(φ) = p1 · · · pk
(φ′) = p′1 · · · p′k

(γ) = (q1, γ1) · · · (qk, γk)

NΦ(pi) = p′i

NΦr(p
′
j) = qj

Therefore, relations in C(O) can be obtained from relations in Cl(O). The complexity of our
algorithms for computing relations in Cl(O) depends on the properties of the defining polynomial
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of K. Let χ be a q-Weil polynomial defining the CM field K in which we work, and (αi)i≤2g such
that χ =

∏
i(X − αi). We have |αi| =

√
q and

|Disc(χ)| =
∏
i 6=j
|αi − αj | ≤ (2

√
q)(

2g
2 ) . (6)

The conditions of Theorem 3.3 and Proposition 3.1 on the degree and the height of the defining
polynomial of K translate into conditions on the dimension g and the cardinality q of the field of
definition Fq of the Abelian varieties having complex multiplication by O. From (6), we see that
log (|Disc(χ)|) ≤ O(g2 log(q)(1 + o(1)). In most cases, the quantity g2 log(q) also gives a lower
bound on log (|Disc(χ)|) when g ∼ log(q)δ for some δ > 0. For this, we need the roots of χ to
be reasonably spaced. More precisely, if for some 1/2 > ε > 0 we have |eiθj − eiθk | ≥ 1

pε , then
log (|Disc(χ)|) ≥ O(g2 log(q)(1 + o(1)). The probability that two complex numbers eiθj , eiθk on
the unit circle satisfy |eiθj − eiθk | < 1

pε is asymptotically the same has the probability for having
|θj − θk| < 1

pε . Therefore, if (θj)j≤2g are equidistributed then we have

Pr

(
∀j, k, |eiθj − eiθk | ≥ 1

pε

)
=
∏
l≤2g

(
1− l · 1

pε

)
→ 1. when g →∞.

An interesting special case is the restriction to families of Abelian varieties that are Jacobian
varieties of curves. In this case, it is not guarantied that the (θj)j≤2g are equidistributed. However,
there is a result of Katz and Sarnak [22] that ensures that even with such a statistical bias, the
distribution of eigenangles remains close to uniform.

Theorem 4.1 (Katz-Sarnak). LetMg(Fq) be the set of Fq-isomorphism classes of genus-g curves
over Fq and discrep(µ, ν) := Sups∈R |CDFµ(s)− CDFν(s)|, where CDFµ(s) :=

∫
]−∞,s] dµ. Then

lim
g→∞

lim
q→∞

(
1

|Mg(Fq)|

) ∑
C∈Mg(Fq)

discrep(µ(univ), µ(C/Fq)) = 0,

where µ is the spacing measure and µ(univ) is the limit of µ(U(N)) as N grows to infinity where
U(N) is the unitary group of size N .

Asymptotically, when g ∼ log(q)δ for some δ > 0, we have log (|Disc(χ)|) = Θ(g2 log(q)(1 +
o(1)) with probability 1. We can apply Algorithm 2 and Algorithm 4 from the perspective of an
Abelian variety.

Proposition 4.2 (GRH-Heuristic 1). Let F be an infinite family of dimension g CM Abelian
varieties over Fq such that g ∼ log(q)δ for some δ > 0, and let O be an order in the center K of
Q⊗End(V ) for some V ∈ F . Then there is an algorithm that returns a B-smooth decomposition
of an ideal a ⊆ O in time

log (N (a))1+o(1) Lg2 log(q)(α, c1) where B = Lg2 log(q)(α, c2) for some c1, c2 > 0.

The value of α is

• α = 1/2 in the general case.

• α = 1/3 when δ = 1.

Furthermore, with asymptotic probability 1 we have

g2 log(q) = Θ(log (|Disc(χ)|) (1 + o(1)),

even if we restrict ourselves to families of Jacobians of curves.
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Proof. When g ∼ log(q)δ, then g ∼
(
g2 log(q)

)α for some α ≤ 1/2, thus falling in the range of
applicability of the L(1/2) algorithm. In addition, g ∼

(
g2 log(q)

)1/3 happens when g ∼ log(q)1/3,
thus ensuring that Algorithm 4 runs in heuristic expected time Lg2 log(q)(1/3, c) for some c > 0.
The relation between g2 log(q) and log (|Disc(χ)|) results from the above discussion.

Once a relation between classes of ideals of reasonably small norm is found in C(O), the eval-
uation of its action boils down to the evaluation of the action of all the ideals in the relation.
If a ∼ p1 · · · pk in C(O), then evaluating the action of a (via a degree N (a) isogeny) boils down
to evaluating that of all the pi for i ≤ k. Evaluating an isogeny corresponding to a given ideal
p of norm l (i.e. an (Z/lZ)g-isogeny) between Abelian varieties expressed in a system of theta
coordinates can be done following the approach of Lubicz and Robert [25]. When the l-torsion
is known, evaluating an (Z/lZ)g-isogeny can be done in time lO(g). Although exponential in g,
this is still subexponential in eg2 log(q). The main obstruction for a direct application of Proposi-
tion 4.2 to a generalization of Jao’s subexponential method for the computation of a large degree
isogeny [20] is the computation of the l-torsion. Indeed, the classical approach involves drawing
points at random, which is computationally very expensive since a dimension-g Abelian variety is
represented by equations between at least 4g coordinates (in the case of a representation by level
4 theta coordinates).

5 Conclusion and future perspectives

We presented an algorithm to derive an L∆(α, c1)-smooth relation in heuristic expected time
L∆(α, c2) in Cl(O) for some order in a number field, where c1, c2 > 0 and 0 < α < 1. We achieve
a subexponential complexity even in classes of number field of degree growing to infinity, which
is a significant improvement over the Buchmann method [6], and we are able to work with ideals
in any non-maximal order unlike in [2] where we restricted ourselves to the equation order. We
showed direct applications of Algorithm 2 and Algorithm 4 to computational number theory and
cryptology.

Our decomposition algorithms could be generalized to find L∆(α, c1)-smooth relations in
heuristic expected time L∆(β, c2) for α 6= β. This would be useful in particular in the con-
text of isogeny evaluation where one might want to spend more time to get a decomposition over
ideals of smaller norm. Indeed, when evaluating an isogeny, we need to account for the cost action
of the ideals occurring the relations. The q-descent could also be generalized to wider classes of
number field to derive relations in time L∆(α, c) for 1/2 > α > 1/3. It would be interesting to
have a panorama of the classes of number fields for which Algorithm 4 outperforms Algorithm 2.
Finally, improving the the enumeration of short lattice vectors would result in a significant im-
provement to the q-descent since it is a bottleneck that forces us to restrict the classes of number
fields to which it applies.
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