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Abstract

We present an analysis of Bernstein’s batch integer smoothness test when applied to the
case of polynomials over a finite field Fq. We compare the performance of our algorithm
with the standard method based on distinct degree factorization from both an analytical
and a practical point of view. Our results show that the batch test offers no advantage
asymptotically, and that it offers practical improvements only in a few rare cases.

1 Introduction

Smoothness testing is an essential part of many modern algorithms, including index-calculus al-
gorithms for a variety of applications. Algorithms for integer factorization, discrete logarithms
in finite fields of large characteristic, and computing class groups and fundamental units of num-
ber fields require smoothness testing of integers. Testing polynomials over finite fields for t-
smoothness, i.e., determining whether all irreducible factors have degree less than or equal to t, is
also important in other settings. For example, the relation search performed to solve the discrete
logarithm problem in the Jacobian of a genus g hyperelliptic curve over a finite field Fq by the
Enge-Gaudry method [7] requires testing of a large amount of degree-g polynomials over Fq for
t-smoothness. Smoothness testing of polynomials is also used in the cofactorization stage of siev-
ing algorithms in function fields (see [11] for a survey mentioning their relevance to the discrete
logarithm in finite fields). The sieve selects candidate polynomials over F2 that are likely to be
smooth, and then these are rigorously tested for smoothness. The discrete logarithm problem in
the Jacobian of a hyperelliptic curve over Fq can also be solved by using sieving methods [14] in
an analogous manner.

In [2], Bernstein presented an algorithm to test the smoothness of a batch of integers that
runs in time O

(
b(log b)2 log log b

)
, where b is the total number of input bits. This represents a

significant improvements over the elliptic curve method described by Lenstra [9] which is conjec-

tured to work in time O(be
√

(2+o(1)) log(b) log log(b)). This method has been used successfully in a
number of contexts, for example by Bisson and Sutherland as part of an algorithm for computing
the endomorphism ring of an elliptic curve over a finite field [4] and by the authors for computing
class groups in quadratic fields [3].

Bernstein’s algorithm can be adapted easily for smoothness testing of polynomials over finite
fields. However, it is not clear how much of a practical impact the resulting algorithm would have
because, unlike the integer case, testing a polynomial over Fq for t-smoothness can be done in
polynomial time with respect to the input, as described by Coppersmith [5]. Several variants of
Coppersmith’s method exist and are used in practice; we refer to the one described by Jacobson,
Menezes and Stein [8]. When using “schoolbook” polynomial arithmetic, the number of field
multiplications required for this method is in O(d2t log q + d2+ε) where d is the degree of the
polynomial to be tested. With asymptotically faster algorithms, this improves to O(d1+εt log q).
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The main idea of Bernstein’s algorithm is to test a batch of polynomials for smoothness simul-
taneously. The product of these polynomials is first computed, followed by a “remainder tree”,
resulting in the product of all irreducible of degree t or less modulo each individual polynomial.
Those that result in zero are t-smooth. The point is that much of the arithmetic is done with very
large degree polynomials where the asymptotically fastest algorithms for polynomial arithmetic
work best. When compared with Coppersmith’s method, where the single polynomial operands
have relatively small degree, the hope is that the use of these asymptotically faster algorithms
results in an improved amortized cost.

In this paper, we describe our adaptation of Bernstein’s algorithm for smoothness testing of
polynomials over Fq and compare its performance with that of Jacobson, Menezes and Stein [8].
We show that the amortized number of field operations is in O

(
dt log(q) + d1+ε

)
, almost the

same as that of the standard method. We present numerical results obtained with a C++ imple-
mentation based on the libraries GMP, GF2X, and NTL confirming our analysis (implementation
is available upon request). We test our algorithm on a number of examples of practical relevance
and show that the batch algorithm does not offer an improvement.

In Section 2, we briefly review the main polynomial multiplication and remainder algorithms
and their complexities in terms of field operations. We recall Coppersmith’s smoothness test, as
described in [8] in Section 3, and give a complexity analysis. In the next section we describe our
adaptation of Bernstein’s algorithm to polynomials over finite fields, followed by its complexity
analysis. We conclude with numerical results demonstrating the algorithm’s performance in
practice.

2 Arithmetic of polynomials

Let A,B ∈ Fq[x] where deg(A) = a, deg(B) = b with a ≥ b, and q = pm where p is a prime. We
express operation costs in terms of the number of multiplications in Fq, as a function of a and b,
required to perform the operation.

Most implementations of polynomial arithmetic use multiple algorithms, selecting the most
efficient one based on the degrees of the operands. Our subsequent analysis considers three algo-
rithms, the basic “schoolbook” method, the Karatsuba method, and a sub-quadratic complexity
algorithm using fast Fourier transform (FFT).

The “schoolbook” method has the following costs:

• computing AB requires (a+ 1)(b+ 1) multiplications in Fq;

• computing A mod B requires (b+ 1)(a− b+ 1) multiplications in Fq.

Asymptotically, both algorithms have complexityO(d2). The Karatsuba method requiresO(dlog2 3)
field multiplications. The Schönhage-Strassen method [12] based on the Fast Fourier Transform
(FFT) requires O(d log(d) log log(d)) field multiplications where d = max(a, b).

Fast multiplication allows a fast remainder operation via Newton division running in time
2.5M(2(a − b + 1)) +M(2b) where M(d) is the cost of the multiplication between two degree-
d polynomials. In particular, the cost of reducing a degree-2d polynomial modulo a degree-
d polynomial is approximately 3.5M(d). Combined with the FFT, this gives us a remainder
algorithm running in time O(d log(d) log log(d)) where d = max(b, a− b).

Asymptotically, we will write the cost of multiplication and remainder computation as O(dθ)
for some real constant theta 1 < θ ≤ 2 depending on the particular algorithm used. For the
schoolbook algorithms we have θ = 2, for Karatsuba θ = log2 3, and for FFT we can take θ > 1
arbitrarily small. Similarly, we will use O(dε) to denote logarithmic functions of d.
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3 Smoothness Testing of Single Divisors

To assess the impact of our batch smoothness test for polynomials, we need a rigorous analysis
of Coppersmith’s method that incorporates practical improvements such as those described by
Jacobson, Menezes and Stein [8]. In this section, we remind the reader of this method and provide
an analysis of the cost according to the framework defined in Section 2.

Suppose we have a polynomial N of degree d and that we want to determine whether N is
t-smooth. A well-known fact about polynomials over Fq is that xq

i − x is equal to the product
of all irreducible polynomials of degree dividing i (see for example [10]). This observation can be
used in an analogue manner to efficient distinct-degree factorization algorithms for an efficient
smoothness-testing algorithm as follows:

1. Let l = bt/2c. Compute H = (xq
l+1 − x)(xq

l+1 − x) . . . (xq
t − x) (mod N).

2. Compute H = Hd (mod N).

3. If H = 0, then N is t-smooth.

If N is t-smooth and square-free, then H = 0 after Step 1, since H is divisible by all polynomials
of degree ≤ t. The second step checks whether H is divisible by all polynomials of degree ≤ t
with multiplicity deg(N), so any factors of N occurring to high powers will be detected.

The smoothness-testing algorithm is presented in Algorithm 1. In order to facilitate the
subsequent analysis, this algorithm is presented in detail.

Algorithm 1 Coppersmith Smoothness Test

Input: N ∈ Fq[x] with deg(N) = d, t ∈ Z
Output: “yes” if N is t-smooth, “no” otherwise
1: {Compute P = xq

bt/2c
(mod N)}

2: Set l = bt/2c.
3: P = xq (mod N))
4: for i = 1 to l do
5: Compute P = P q (mod N)
6: end for
7: {Compute H = (xq

l+1 − x)(xq
l+1 − x) . . . (xq

t − x) (mod N).}
8: Let H = 1.
9: for i = l + 1 to t do

10: P = P q (mod N). {Here P = xq
i

(mod N)}
11: Q = P − x {Here Q = (xq

i − x) (mod N)}
12: Make Q monic.
13: H = HQ (mod N) {Here H = (xq

l+1 − x) . . . (xq
i − x) (mod N)}

14: If H = 0 go to Step 18.
15: end for
16: {Compute H = Hd (mod N)}
17: H = Hd (mod N)
18: return “yes” if H = 0, “no” otherwise

Theorem 3.1. Algorithm 1 requires O(dθt log q+ dθ+ε) multiplications in Fq, assuming multipli-
cation and remainder of polynomials of degree d require O(dθ) multiplications in Fq.

Proof. We have that deg(N) = d.

• Steps 2-6 consist of l = bt/2c exponentiations to the power of q modulo N. Each of these
costs O(dθ log q) multiplications, for a total of O(dθt log q) multiplications.
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• Steps 8-15 consist of t− l = dt/2e iterations, each of which performs:

– one qth power modulo N (O(dθ log q) multiplications),

– making Q monic (d− 1 field multiplications),

– one multiplication modulo N (O(dθ) multiplications)

The total is O(dθt log q).

• Step 17 performs a dth power modulo N, costing O(log(d)dθ) field multiplications.

Thus, the total number of multiplications in Algorithm 1 is in O(dθt log q+dθ log d) and the result
follows.

Depending on which version of multiplication and remainder is used, we obtain the following
corollaries.

Corollary 3.2. If schoolbook arithmetic is used, Algorithm 1 requires O(d2t log q + d2+ε) field
multiplications.

Corollary 3.3. If Karatsuba arithmetic is used, Algorithm 1 requires O(dlog2 3t log q+ dlog2(3)+ε)
field multiplications.

Corollary 3.4. If FFT arithmetic is used, Algorithm 1 requires O(d1+εt log q + d1+ε) field mul-
tiplications.

4 Batch smoothness test of polynomials

We now present Bernstein’s batch smoothness test [2] applied to polynomials over a finite field.
Let P1, . . . , Pm ∈ Fq[x] be the irreducible polynomials of degree at most t, and N1, . . . , Nk be
polynomials that we want to test for t−smoothness. Note that the algorithm will work for any
set of irreducible polynomials — for example, when solving the discrete logarithm problem in
the Jacobian of a hyperelliptic curve we would only take irreducibles that split or ramify. The
algorithm determines which of the Ni factor completely over the set of irreducibles.

The batch smoothness test starts with the computation of P = P1 . . . Pm by means of a
product tree structure. To compute this tree, we begin with the products of pairs of leaves of the
tree and recursively compute the products of pairs of elements one level higher in the tree until
we reach the root, which equals P. This process is depicted in Figure 1.

P1 . . . Pm

P1 . . . Pbm/2c

...

P1 P2

...

Pbm/2c+1 . . . Pm

...

Figure 1: Illustration of product tree to compute P = P1 . . . Pm.

Note that in practice the product tree is not implemented recursively; instead, all nodes in
the tree are stored in an array and index arithmetic is used to find the parent of the two children
being multiplied. Note also that in the context of an index-calculus algorithm this computation
need only be done once at the beginning when the factor base is computed.
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Given P , we then compute P mod N1, . . . , P mod Nk by computing a remainder tree. We
first compute the product tree of N1, . . . , Nk as described above, and replace the root N1 . . . Nk

by P mod N1 . . . Nk, Then, using the fact that

P mod N = (P mod NM) mod N, (1)

for N,M ∈ Fq[x], we recursively replace each node’s children with the value stored in the node
modulo the value stored in the child. At the end, Equation 1 guarantees that the leaves in the
tree will contain P mod Ni for every i ≤ k. This process is illustrated in Figure 2.

P mod N1 . . . Nk

P mod N1 . . . Nbk/2c

...

P mod N1 P mod N2

...

P mod Nbk/2c+1 . . . Nk

...

Figure 2: Illustration of the remainder tree of P and N1, . . . , Nk.

At the end of this process, if a leaf node stores zero, then we know that the original value is
smooth with respect to the Pi and square-free. To account for higher multiplicities of the Pi, we
could raise the values of each non-zero leaf node (P mod Ni) to the power of an exponent at least
as large as deg(Ni), as in the algorithm from the previous section. In fact, to really amortize the
cost of this operation, it is even better to perform the exponentiation at the root of the remainder
tree, where the degree of the polynomials involved is the highest (thus exploiting asymptotically
fast arithmetic). Therefore, prior to computing the remainder tree, we could update P by

P ← P e mod N1 · · ·Nk,

where e is an exponent at least as large as maxi deg(Ni). This method returns all smooth values
without false positive. Based on an idea of Coppersmith [5], we use a variant that avoids the
exponentiation, but which can return false positive. It consists of calculating N ′i · P mod Ni at
each non-zero leave to account for multiple roots in Ni. Note that this operation could in fact be
performed on the root, but we expect it to produce too many false positive whithout improving
the theoretical complexity.

Most index-calculus algorithms make use of “large prime” variants, where terms that are
completely t-smooth except for a small number of factors of degree less than a given large prime
bound are also useful. In order to detect such partially-smooth polynomials, we remove all the
factors of degree at most t from Ni by computing Ni/ gcd((P mod Ni)

deg(Ni), Ni). If this quantity
has degree at most our given large prime bound, then we accept Ni as being partially smooth.

This method is summarized in Algorithm 2.

5 Complexity analysis

To compare the computational cost of Algorithm 2 (which tests a batch of polynomials) with that
of Algorithm 1 (which tests one), we provide an analysis of the amortized cost of testing a batch
of k polynomials of degree d over Fq. We incorporate the crossover points between schoolbook,
Karatsuba, and FFT-based polynomial multiplication in our analysis. Indeed, in practical appli-
cations, d is not necessarily very large, so it is interesting to assess how the algorithm performs
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Algorithm 2 Batch smoothness test

Input: B = {P1, · · · , Pm}, N1, · · · , Nk, large prime bound tlp (no large primes if tlp = 0).
Output: List L of B-smooth Ni.
1: Compute P = P1 . . . Pm using a product tree.
2: Compute P mod N1, . . . , P mod Nk using a remainder tree.
3: L = {}.
4: for i = 1 to k do
5: yi = P mod Ni, yi ← N ′i · yi mod Ni.
6: if yi = 0 or (tlp > 0 and deg(Ni/ gcd(yi, Ni)) ≤ tlp) then
7: L← L ∪ {Ni}.
8: end if
9: end for

10: return L

in this setting. Let d0 the degree for which Karatsuba multiplication becomes faster than the
schoolbook one and d1 the crossover point between FFT and Karatsuba. The crossover points
can be observed experimentally, as shown in Section 6.

5.1 Cost of the product tree

The cost of the batch smoothness test is amortized, which means that if we test a batch of k
polynomials, we divide the total cost by k.

Theorem 5.1. The amortized cost of calculating the product tree of a batch of k polynomials of
degree d over Fq is in

O

(
d

(
d0 + d

log2(3)−1
1 − dlog2(3)−10 +

(kd)ε − dε1
2ε − 1

))
.

Proof. We begin by analyzing the cost of the steps using “schoolbook” multiplication. We denote
by i ≥ 1 the level of the product tree we are calculating, where i = 1 corresponds to the leaves.
At each level, we perform k

2i
multiplications between polynomials of degree 2i−1d. We switch to

Karatsuba when 2id = d0, that is when i = i0 := log
(⌈

d0
d

⌉)
. The cost of the computation of a

level i ≤ i0 of the product tree is in

O

(
k

2i
(
2id
)2) ⊆ O (k2id2

)
.

The combined cost of all these levels is in

O

kd2 log
(⌈

d0
d

⌉)∑
i=1

2i

 ⊆ O(kd22log(⌈ d0d ⌉)) ⊆ O(kdd0).

When i0 ≤ i < i1 := log
(⌈

d1
d

⌉)
, we use Karatsuba multiplication, and the cost of a level of

the tree is in

O

(
k

2i
(
2id
)θ) ⊆ O(kdθ (2θ−1

)i)
,

where θ = log2(3). The combined cost of all these level is in

O

kdθ


log
(⌈

d1
d

⌉)∑
i=log

(⌈
d0
d

⌉)
(

2θ−1
)i

 ⊆ O
(
kd

(
dθ−11 − dθ−10

2θ−1 − 1

))
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When i ≥ i1, we use FFT multiplication and the cost of computing one level of the product
tree is in

O

(
k

2i
(
2id
)θ) ⊆ O(kdθ (2θ−1

)i)
,

where θ = 1 + ε. The combined cost of all these level is in

O

kdθ
 log(k)∑
i=log

(⌈
d1
d

⌉)
(

2θ−1
)i

 ⊆ O
(
kd

(
(kd)θ−1 − dθ−11

2θ−1 − 1

))

The result follows by adding the cost of the computation of the levels i ≤ i0, i0 < i ≤ i1 and
i ≥ i1 and dividing by k to get the amortized cost.

As this occurs in particular for polynomials in F2e [X], it is interesting to consider the case
where no implementation of the FFT multiplication is available.

Corollary 5.2. With the notations of Theorem 5.1, the amortized cost of calculating the prod-
uct tree of a batch of k polynomials of degree d over Fq with only schoolbook and Karatsuba
multiplication is in

O
(
d
(
d0 + (kd)log2(3)−1 − dlog2(3)−10

))
.

Proof. The proof immediately follows from that of Theorem 5.1. It suffices to remove the levels
i0 < i ≤ i1.

5.2 Cost of the remainder tree

At the level i < log(k) of the remainder tree, we reduce k
2i

degree 2id polynomials modulo 2i−1d

polynomials. As stated in Section 2, this has the same cost as performing k
2i

multiplications
between degree-2i−1d polynomials. The computation of the root of the remainder tree (which
comes first), consists of the reduction of P = P1 · · ·Pm modulo N1 · · ·Nk. Since the cost of the
product tree and remainder tree increases with k, we only consider the case deg(P ) ≥ kd, as any
other batch size would not be optimal. Then the amortized cost of the computation of the root
of the remainder tree is in

O

(
deg(P )θ

k

)
,

where θ = 1 + ε if FFT multiplication is available, and θ = log2(3) otherwise. The total cost
of the remaining levels is the same as that of the product tree. The last operation consists of k
multiplications N ′i · P mod Ni between degree d polynomials. Depending on the size of d, this is
in the same complexity class as the levels of the product tree using either plain multiplication,
Karatsuba, or FFT. It therefore does not appear as an extra term in the overall complexity.

Theorem 5.3. The amortized cost of calculating the remainder tree of a batch of k polynomials
of degree d over Fq is in

O

(
deg(P )1+ε

k
+ d

(
d0 + d

log2(3)−1
1 − dlog2(3)−10 +

(kd)ε − dε1
2ε − 1

))
.

As previously, we can easily derive an analogue when only schoolbook and Karatsuba multi-
plication are available.

Corollary 5.4. If only schoolbook and Karatsuba multiplications are used, the amortized cost of
calculating the remainder tree of a batch of k polynomials of degree d over Fq is in

O

(
deg(P )log2(3)

k
+ d

(
d0 + (kd)log2(3)−1 − dlog2(3)−10

))
.
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5.3 Optimal size of batch

Let us find the optimal value of k. Whether we use FFT or not, the cost function has the shape

c(k) = A/k +Bkθ−1 + C,

where A = deg(P )θ, B = dθ

2θ−1−1 , C does not depends on k and θ = 1 + ε if we use FFT
multiplication, θ = log2(3) otherwise. A critical point for this function is attained for

kopt =

(
A

(θ − 1)B

)1/θ

∈ O
(

deg(P )

d

)
.

5.4 Overall cost

By combining the optimmal size of batch with the expression of the cost of the remainder tree
as a function of k, we naturally get the overall cost.

Theorem 5.5. The amortized cost of Algorithm 2 is given by

O

(
ddeg(P )ε + d

(
d0 + d

log2(3)−1
1 − dlog2(3)−10 +

(deg(P ))ε − dε1
2ε − 1

))
when FFT multiplication is available.

Corollary 5.6. If only schoolbook and Karatsuba multiplications are used, the amortized cost of
Algorithm 2 is in

O
(
ddeg(P )log2(3)−1 + d

(
d0 − dlog2(3)−10

))
.

Thus, as a function of d,, the batch algorithm has roughly the same asymptotic complexity as
the single polynomial test. We also see that for d ≤ d0, where the single polynomial test uses only
schoolbook arithmetic but the batch algorithm may use Karatsuba or FFT, the batch algorithm
is also not expected to offer much improvment. In particular, the costs given in Theorem 5.5
and its corollary both have a term of the form dd0 which, for d close to d0 is d2. Although some
of this is cancelled by negative terms in the cost functions, we still expect the overall cost to be
closer to d2. The situation is similar for values of d close to the FFT threshold d1.

The dependency in t (where t is the bound on the degree of the factor base elements) is
hidden in the term in deg(P ). Asymptotically, as q → ∞, we have deg(P ) ∈ O(qt). When
Algorithm 2 is used with FFT multiplication, we have a term in deg(P )ε. Here, the ε represents
the logarithmic terms in the FFT complexity, so deg(P )ε is roughly O(log(qt) log log(qt)), which
is O(t log t) as t goes to infinity. Therefore, the dependence on t in Algorithm 2 is super-linear
when FFT multiplication is used, as opposed to linear for Algorithm 1. On the other hand, if
only Karatsuba multiplication is used, then large values of t will have a considerable impact on
the performances of Algorithm 2 since the dependency in t is exponential.

6 Computational results

Although our analysis predicts that the batch smoothness test and the single tests will have
similar performances as d → ∞, it is expected to be somewhat more complicated in practice.
First, our asymptotic analysis suppressed logarithmic terms and constants and hence does not
adequately differentiate between the actual costs of multiplication and remainder computation.
Thus, the actual runtime functions are more complicated, as well as our estimate of an optimal
batch size. Secondly, implementations of polynomial arithmetic generally use more algorithms
than the two assumed in our analysis. As a minimum, Karatsuba multiplication is used for some
range of polynomial degrees between “schoolbook” and FFT algorithms (eg. NTL [13] switches
to Karatsuba for degree greater than 16)) and some switch between other algorithms as well (eg.
the GF2X library [1]). In this section, we give numerical data comparing the performance of the
single-polynomial and batch smoothness tests.
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6.1 Arithmetic operations

The crossover points d0 between “schoolbook” and Karatsuba multiplication, and d1 between
Karatsuba and FFT multiplication, occur in the analysis of the batch smoothness test described
in Section 5. It is interesting to know if these only have a theoretical significance or if they occur
in the practical experiments that we ran. To illustrate that this is the case, we show the evolution
of the run time of multiplication and division as d grows in F31[x] and F2[x]. Table 1 compares
the quadratic time multiplication and division (respectively denotes as Plain mul and Plain rem)
to the quasi-linear time method based on FFT for polynomials in F31[x] of degree between 100
and 90000. The implementation used is the one of the NTL library [13]. In Table 2, we compare
Toom-Cook multiplication and the FFT-based multiplication for polynomials of degree between
150000 and 100000000 with the gf2x library [1]. In both cases, the timings in CPU msec for 100
operations were obtained on an Intel Xeon 1.87 GHz with 256 GB of memory and are presented
in the Appendix. The crossover point for polynomials in F31[x] is around d = 400 and for
d = 150000 in F2[x]. Note that strictly speaking, these timings do not give the value of d1.
Indeed, we could not isolate Karatsuba multiplication in the corresponding libraries. Also, we
could not run the FFT-based algorithm using F2[x] for d < 150000 because the thresholds were
hard coded. However, we can certainly hope from the timings that d1 (and thus d0) are within
practical reach.

6.2 Optimal size of batch

The analysis of the batch smoothness test in Section 5 showed the existence of an optimal size

of batch k of the form kopt = O
(
deg(P )
d

)
. To illustrate the impact of k on the run time, we

fixed d = 100 and tested the t-smoothness of 100 polynomials in F2[x] for t = 25. We ran our
experiment on an Intel Xeon 1.87 GHz with 256 GB of memory. The corresponding timings
are presented in the Appendix. Figure 3 shows the graph of the amortized time in CPU msec
for log(k) = 5, · · · , 19. Note that we only take powers of 2 to optimize the use of the tree
structure. We clearly see that there is an optimum value. On the same architecture, we ran other
experiments to show the dependency of the optimal value of k on d and deg(P ). Table 3 shows
the optimal value of k for the test of smoothness of polynomials in F2[x] of fixed degree d = 100
when t varies between 5 and 25. Likewise, in Table 4, we fix t = 25 and let the degree of the
polynomials in F2[x] vary between 100 and 1000. In each case, the metric to choose the optimal
k is the amortized CPU time for 100 tests. Despite a few outliers, the general trend predicted
by the theory seems to be respected. Table 3 shows that the optimal value of k gets larger as t
(and thus deg(P )) gets larger. Meanwhile, Table 4 shows that when d gets larger, the optimal k
gets smaller, which is consistent with the term in 1

d predicted by the analysis. Since the analysis
of Section 5 is asymptotic, and since only moderate values of d and t are within practical range,
it is delicate to confirm the theory with our available data. In addition, we have a very low
granularity for k (20 different values). However, the results presented in Table 3 and 4 are quite
promising. Indeed, we can see for example that in Table 3 for deg(P ) = 67100116, k = 131072
while for deg(P ) = 8384230, k = 16384. As 67100116

8384230 ≈ 8 = 131072
16384 , this is consistent with a linear

dependence in deg(P ). In Table 4, we have k = 131072 for g = 100 while k = 16384 for g = 1000.
We have 131072

16384 = 8 while the dependency in 1
d predicted by the analysis suggests a ratio of 10.

6.3 Dependence on t

The smoothness test algorithms presented in Section 3 and Section 4 both depend on the bound t
on the degree of the polynomials in the factor base. The larger t, the more expensive a smoothness
test is. The expected time of Algorithm 1 has a term in tdθ log(q) where 1 < θ ≤ 2. As discussed
in the previous section, the dependence on t in the cost of Algorithm 2 is expected to be roughly
t log t when FFT multiplication is used.
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Figure 3: Optimal value of k in F2[x] for t = 25 and d = 100
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To illustrate this, we ran experiments in F2[x] and F3[x] to show the impact of FFT multipli-
cation, and in F4[x] where we only have “schoolbook” and Karatsuba multiplication. We fixed
the degree d of the polynomials to be tested to d = 200 in F2[x] and F3[x], and d = 10 in F4[x].
We measured the time to test the t-smoothness of 100 polynomials for t between 5 and 25 in
F2[x], between 5 and 15 in F3[x] and between 5 and 10 in F4[x]. In each case, we compare the
amortized cost of testing the smoothness of one polynomial using Algorithm 1 (single FFT for
F2[x] and F3[x], single Karatsuba for F4[x]) and Algorithm 2 (batch test). The timings, which are
displayed in Table 5 Table 6, and Table 7 available in the Appendix were obtained on a machine
with 64 Intel Xeon X7560 2.27 GHz cores and 256 GB of shared RAM.

Figure 4: Dependency on t in F2[x] with d = 200
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All the timings show that the cost increases with the size of t. The analysis predicts a linear
dependency in t for the single tests. We see in Table 5 that this is consistent with the timings of
Algorithm 1 with FFT. For example, in F2[x] for t = 25, the average time is 0.0957 msec while
it is 0.0255 for t = 5. We have 0.0957

0.0255 ≈ 3.75 while the theory predicts a ratio of 5. Likewise, in
F3[x], the time for t = 15 is 5.263 msec while it is 1.597 for t = 5, which is a ratio of 5.263

1.597 ≈ 3.29
while the theory predicts a ratio of 3. The expected super-linear dependency in t of Algorithm 2
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with FFT multiplication does not appear quite as clearly, but the growth does appear to be worse
than linear.

Table 7 shows us the dependency in t for Algorithm 1 and Algorithm 2 in F4[x]. The time
for Algorithm 1 with t = 10 is 2.437 while it is 1.396 for t = 5. The ratio is 2.437

1.396 ≈ 1.74 while
the theory predicts a ratio of 2. For Algorithm 2, the time with t = 10 is 3.867 while it is 1.428
for t = 5. The ratio is 3.867

1.428 ≈ 2.70. In this case, NTL uses Kronecker substitution to perform
the multiplication in F2[x] using asymptotically fast arithmetic, so the expected ratio should be
slightly above 2.

6.4 Dependency in d

When fast multiplication is assumed, the asymptotic complexity of both Algorithm 1 and Algo-
rithm 2 is quasi linear in d, and when using Karatsuba multiplication, the theory predicts that
it is in dlog2(3). To illustrate this, we ran experiments for fixed values of t and increasing d in
F2[x], F3[x] and F4[x]. We compared the performances of the single test with FFT multiplication
(single FFT) and Algorithm 2 (batch test). In F4[x], only Karatsuba multiplication is available
for both Algorithm 1 (denoted single Karatsuba) and for Algorithm 2. The timings, which are
displayed in Table 8, Table 9, Table 10, and Table 11 available in the Appendix were obtained
on a machine with 64 Intel Xeon X7560 2.27 GHz cores and 256 GB of shared RAM.

Figure 5: Dependency on d for large d in F2[x] for t = 20
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We observe that Algorithm 1 and Algorithm 2 perform very similarly when using either the
FFT multiplication. In addition, according to the theory, their run time seems to grow linearly
with the degree once d is sufficiently large. This is shown in particular in Figure 5, in the case
of F2[x] where FFT arithmetic is available and we consider d up to 106. Our experiments for
F4 presented in Figure 7 also show a roughly linear growth. Note that these experiments were
designed to investigate the performance of the algorithm for values of d close to d0, the Karatsuba
threshold. For larger values of d, NTL switches to Kronecker substitution, using the quasi-linear
FFT implementation of GF2X.

The linearity in d is less clear for d ≤ 1000 as shown in Figure 6 in F2[x] for t = 10. However,
it is interesting to note that the variations of the cost with Algorithm 1 and Algorithm 2 are very
similar. This similarity is also well illustrated by Figure 7 which shows the dependency on d in
the run time of Algorithm 1 and Algorithm 2 for d ≤ 100 in F4[x] for t = 6. Once d > 25, the
cost functions seem to differ by a constant, as predicted by the theory.
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Figure 6: Dependency on d for small d in F2[x] for t = 10
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Figure 7: Dependency on d for small d in F4[x] for t = 6
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For small values of d near the thresholds d0 and d1, we also see both algorithms exhibiting
roughly the same performance. Recall that one motivation for considering the batch algorithm
in this context is that it can take advantage of asymptotically faster arithmetic in cases when
the single polynomial algorithm is forced to use schoolbook arithmetic. Unfortunately we did
not observe a dramatic improvement even in this scenario. For example, in Figure 7 (F4[x]) we
notice that the two algorithms have roughly the same performance when d is close to 16, NTL’s
threshold for swithching from schoolbook arithmetic to Karatsuba in this case.

In all our timings showing the dependency in d for fixed t, Algorithm 1 performs better (by
a constant factor) than Algorithm 2 at the notable exception of Table 10 which shows the run
time in F3[x] for fixed t = 5. There, the batch smoothness test seems to provide a mild speed-up
by a constant factor. This may be explained by the conjunction of a small value of t (and thus
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of deg(P )) and by lower thresholds for the value of d1 where the fast multiplication becomes
competitive (which occurs in the theoretical prediction).

6.5 Examples of practical relevance

Our first example is the curve C155 from [14], a genus 31 hyperelliptic curve defined over F25 .
This curve is the result of the Weil descent on an elliptic curve over F2155 as shown in [8]. For
this example, a smoothness bound of 4 is used and the polynomials to be factored have degree
36. The optimal size of batch is k = 32768. The average times for testing the smoothness of
degree-36 polynomials are

• 0.0005884 CPU sec with single test and fast multiplication,

• 0.0012091 CPU sec with the batch test.

The timings were obtained on a machine with 64 Intel Xeon X7560 2.27 GHz cores and 256
GB of shared RAM. The implementation of polynomial arithmetic in F25 [X] we used only has
school-book and Karatsuba remainder algorithms available (no FFT) — we expect somewhat
better performance of the batch method if FFT were added to the implementation.

Our second example is taken from the discrete logarithm computation in F21039 described
in [6]. Here, we assume a smoothness bound of 25 and that the polynomials in F2[x] in the
cofactorization step have degree 99. The factor base has 2807196 primes and the degree of their
product is 67100116. The optimal batch size is k = 131072. The average times for testing the
smoothness of degree-99 polynomials are

• 0.00007016 CPU sec with single test and fast multiplication,

• 0.00019327 CPU sec with the batch test.

The timings were obtained on a machine with 64 Intel Xeon X7560 2.27 GHz cores and 256 GB
of shared RAM. This computation makes use of the GF2X library directly, which does include
optimized polynomial arithmetic for large degree operands.

7 Conclusion

Our theoretical analysis and numerical experiments show that the batch smoothness test does
in general not out-perform the simpler, more memory-friendly single polynomial test. The the-
oretical analysis shows that if FFT multiplication is available, both methods have the same
asymptotic quasi-linear complexity with respect to the degree d of the polynomials to be tested.
As a function of the smoothness bound, the batch method has worse asymptotic complexity,
namely super-linear as opposed to linear. In most practical cases, for sufficiently large d the
behavior of the two methods only differs by a constant, thus backing up the theory. The single
smoothness test is more efficient in almost all cases. The two factors that can make the batch
smoothness test faster than single tests are a low smoothness bound and a low threshold on the
degree for which FFT multiplication becomes fast, as we can see in Table 10.
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A Timings

In this appendix, we present the timings that were used to illustrate the theoretical predictions on
the run time of Algorithm 1 and Algorithm 2, as well as for the comparison of their performance.
Table 1, Table 2, Table 3 and Table 4 were obtained on an Intel Xeon 1.87 GHz with 256 GB of
memory while the rest of the timings was obtained on a machine with 64 Intel Xeon X7560 2.27
GHz cores and 256 GB of shared RAM.

Table 1: Arithmetic operations in F31 with respect to the degree d

d Plain mul FFT mul Plain rem FFT rem

100 10 30 30 60
200 40 50 120 160
300 70 100 280 330
400 110 100 490 340
500 160 110 760 360
600 230 200 1100 710
700 270 200 1500 720
800 340 210 1940 730
900 400 220 2480 750

1000 480 220 3060 760
2000 1470 470 12200 1620
3000 2760 920 26690 3320
4000 4340 980 47570 3450
5000 6610 1860 74160 6880
6000 8210 1920 109350 7260
7000 10340 2000 149180 7370
8000 13130 2050 195620 7480
9000 16820 3920 246860 14870

10000 19900 3900 304000 15200
20000 59800 8400 1176800 30800
30000 100200 8700 2606200 27400
40000 178900 17400 4713200 56200
50000 244600 18400 7702100 66200
60000 302700 18500 10073400 57600
70000 431900 34800 14829300 134100
80000 532000 35700 19094700 137900
90000 600400 37100 24063600 141400
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Table 2: Multiplication in F2[x] with respect to the degree d

d Toom-Cook mul FFT mul

150000 470 430
250000 950 690
500000 2430 1490

1000000 6650 3250
5000000 63840 23200

10000000 183330 55030
50000000 1595270 314470

100000000 4110380 731010

Table 3: Influence of t on the optimal value of k for d = 100

t deg(P ) k

5 52 1024
6 106 1024
7 232 1024
8 472 1024
9 976 1024

10 1966 1024
11 4012 2048
12 8032 1024
13 16222 2048
14 32476 4096
15 65206 1024
16 130486 2048
17 261556 2048
18 523132 4096
19 1047418 8192
20 2094958 16384
21 4191976 32768
22 8384230 16384
23 16772836 131072
24 33545716 262144
25 67100116 131072
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Table 4: Influence of d on the optimal value of k for t = 25

d k

100 131072
200 65536
300 131072
400 32768
500 65536
600 65536
700 16384
800 16384
900 32768

1000 16384

Table 5: Influence of t on the run time in F2[x] for d = 200

t single FFT batch test

5 0.0255000 0.0275000
6 0.0227500 0.0225000
7 0.0275000 0.0275000
8 0.0318750 0.0303750
9 0.0342500 0.0345000

10 0.0440000 0.0355000
11 0.0446250 0.0445000
12 0.0585625 0.0544375
13 0.0531563 0.0599375
14 0.0558750 0.0645625
15 0.0593750 0.0764688
16 0.0621172 0.0988672
17 0.0679414 0.1147110
18 0.0649724 0.1303620
19 0.0747079 0.1656130
20 0.0770960 0.1923600
21 0.0816949 0.2216070
22 0.0840844 0.2599670
23 0.0828506 0.2791900
24 0.0828362 0.2979370
25 0.0957900 0.3734650
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Table 6: Influence of t on the run time in F3[x] for d = 200

t single FFT batch test

5 1.59750 1.51150
6 1.99750 2.02450
7 2.41375 2.43750
8 2.52275 2.85962
9 3.19660 3.82236

10 3.44301 4.47033
11 3.82687 5.39385
12 4.00995 6.07482
13 4.56101 7.25818
14 4.84185 8.53217
15 5.26337 11.35560

Table 7: Influence of t on the run time in F4[x] for d = 10

t single Karatsuba batch test

5 1.39675 1.42875
6 1.63213 1.80631
7 1.92971 2.21272
8 2.11232 2.68086
9 2.40723 3.20971

10 2.43713 3.86726
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Table 8: Influence of d on the run time in F2[x] for t = 10

d single FFT batch test

5 0.00567969 0.00577148
10 0.00699061 0.00732203
15 0.00784766 0.00731641
20 0.00868750 0.00817188
25 0.00984375 0.00934375
30 0.01081250 0.01006250
40 0.01262500 0.01125000
50 0.01297560 0.01312110
60 0.01550000 0.01375000
70 0.01837500 0.01781250
80 0.01890620 0.01815620
90 0.02450000 0.01950000

100 0.02062500 0.01837500
150 0.03406250 0.03393750
200 0.03775000 0.03812500
250 0.05925000 0.05300000
300 0.06550000 0.05900000
350 0.08325000 0.08200000
400 0.06775000 0.07225000
450 0.04425000 0.04825000
500 0.03675000 0.04400000
550 0.04100000 0.06075000
600 0.05690620 0.06884370
650 0.05350000 0.07750000
700 0.06425000 0.07375000
750 0.06425000 0.06750000
800 0.06875000 0.08025000
850 0.08850000 0.08850000
900 0.08725000 0.09200000
950 0.09650000 0.11125000

1000 0.09000000 0.09800000
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Table 9: Influence of large d on the run time in F2[x] for t = 20

d single FFT batch test

1000 0.16896600 0.80926700
1500 0.34201700 1.32210000
2000 0.43851000 1.71919000
2500 0.65992600 2.07696000
3000 0.99763800 2.73519000
4000 1.33407000 3.30458000
5000 1.91657000 4.23340000
6000 2.71314000 5.71678000
7000 3.26151000 6.24501000
8000 3.85816000 7.04251000
9000 4.83971000 8.08675000

10000 6.14594000 9.65036000
50000 50.58590000 58.94140000

100000 134.76200000 140.34500000

Table 10: Influence of d on the run time in F3[x] for t = 5

d single FFT batch test

5 0.00948437 0.0147812
10 0.02300000 0.0267500
15 0.03675000 0.0427500
20 0.05100000 0.0572500
25 0.07250000 0.0807500
30 0.10275000 0.1112500
40 0.14700000 0.1472500
50 0.31050000 0.2767500
60 0.37475000 0.3435000
70 0.60350000 0.5162500
80 0.59375000 0.5267500
90 0.70975000 0.6420000

100 0.64875000 0.6045000
150 1.24425000 1.1432500
200 1.34800000 1.2955000
250 2.03675000 1.9017500
300 3.50200000 3.1397500
350 3.88800000 3.6395000
400 3.51150000 3.2830000
450 3.76100000 3.4872500
500 4.28825000 4.0065000
550 7.23575000 6.8602500
600 7.38875000 7.0150000
650 7.47050000 6.8910000
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Table 11: Influence of d on the run time in F4[x] for t = 6

d single Karatsuba batch test

5 0.0286934 0.0544766
10 0.0810391 0.1108360
11 0.1116380 0.1528570
12 0.1221730 0.1645870
13 0.1462990 0.1558240
14 0.1493440 0.1583590
15 0.1928120 0.2057660
16 0.1927390 0.2000050
17 0.2282190 0.2318750
18 0.2385310 0.2418750
19 0.2575210 0.2603760
20 0.1904380 0.2635780
21 0.1823950 0.2587520
22 0.2251990 0.3215900
23 0.2377760 0.3575710
24 0.2104650 0.3225120
25 0.2399790 0.3608470
30 0.3114220 0.3942500
40 0.3496950 0.5163750
50 0.4579820 0.7115210
60 0.4888120 0.6253440
70 0.5246250 0.7597500
80 0.5874060 0.8348750
90 0.8080250 1.2016500

100 0.8473290 1.2471700
200 1.6273100 1.8025000
300 2.5498800 2.8096300
400 3.1251300 3.3780000
500 4.2640000 4.4917500
600 5.0027500 5.3097500
700 5.5476900 6.0990300
800 5.8550000 6.0532500
900 7.3746500 7.5213100

1000 9.2463700 9.3040600
5000 43.8528000 43.7536000

10000 85.3161000 86.2299000
50000 467.7270000 489.9680000

100000 986.6330000 1005.4700000
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