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Abstract. We present improvements to the computations related to
quadratic number fields and their application to cryptology.

1 Introduction

Quadratic number fields were proposed as a setting for public-key cryptosystems
in the late 1980s by Buchmann and Williams [4, 5]. Their security relies on
the hardness of the discrete logarithm problem in the imaginary case and the
infrastructure discrete logarithm problem in the real case. The complexity of
the algorithms for solving these problems is bounded by L(1/2, O(1)) where the
subexponential function is defined as

L(α, β) = eβ log |∆|α log log |∆|1−α

,

where ∆ is the discriminant of the order we are working with. This complexity
is asymptotically slower than the one for factoring which reduces to the problem
of computing the class number, and although the discrete logarithm problem in
the Jacobian of elliptic curves remains exponential, there is no known reduction
between this problem and the discrete logarithm problems in number fields either
[14]. Therefore, studying the hardness of the discrete logarithm problem and of
the principality testing problem on number fields is of cryptographic interest
since they provide alternative cryptosystems whose security is unrelated to those
currently being used.

Following the recommendations for securely choosing discriminants for use in
quadratic field cryptography of [10] for the imaginary case and of [13] for the real
case, we restricited our study to the case of prime discriminants. Indeed, in both
imaginary and real cases, it usually suffices to use prime discriminants, as this
forces the class number h∆ to be odd. In the imaginary case, one then relies on
? The second author is supported in part by NSERC of Canada.



the Cohen-Lenstra heuristics [9] to guarantee that the class number is not smooth
with high probability. In the real case, one uses the Cohen-Lenstra heuristics to
guarantee that the class number is very small (and that the infrastructure is
therefore large) with high probability. This restriction also prevents ourselves
against the attacks described by Castagnos and Laguillaumie in the imaginary
case [7] and by Castagnos, Joux, Laguillaumie and Nguyen in the real case [6]
which are designed for discriminants of the form ∆ = ±np2.

In this paper, we describe improvements to the algorithms for computing the
group structure of the ideal class group Cl(O∆) of the maximal orderO∆, solving
instances of the discrete logarithm problem in Cl(O∆), computing the regulator
of O∆ when ∆ > 0 and solving the infrastructure discrete logarithm problem.
After a brief description of the necessary background concerning number fields,
we describe the last improvements affecting the linear algebra phase. We begin
with a dedicated Gaussian elimination strategy to reduce the dimensions of the
relation matrix M . Then, we provide numerical data about an implementation
of a new algorithm for computing the Hermite Normal Form of M and thus
deduce the group structure of Cl(O∆). We also describe a new algorithm for the
regulator computation, and finally we show the impact of a new algorithm due
to Vollmer [23] for solving instances of the discrete logarithm problem in Cl(∆).

Note that most of this paper is not new material. Section 3 is taken from [1],
and Section 4 from [2]. Vollmer’s algorithm described in Section 5 for computing
the HNF was already used in [1], but it had not been compared with the existing
HNF algorithm. Section 6 is taken from [3]. The security estimates given in
Section 7 were not described before.

2 Number fields

Let K = Q(
√

∆) be the quadratic field of discriminant ∆, where ∆ is a non-zero
integer congruent to 0 or 1 modulo 4 with ∆ or ∆/4 square-free. The integral
closure of Z in K, called the maximal order, is denoted by O∆. An ideal can be
represented by the two dimensional Z-module

a = s

[
aZ+

b +
√

∆

2
Z

]
,

where a, b, s ∈ Z and 4a | b2−∆. The integers a and s are unique, and b is defined
modulo 2a. The norm of a is given by N (a) = as2. Ideals can be multiplied using
Gauss’ composition formulas for integral binary quadratic forms. Ideal norm
respects this operation. The prime ideals of O∆ have the form pZ+(bp+

√
∆)/2Z

where p is a prime that is split or inert in K, i.e., the Kronecker symbol (∆/p) 6=
−1. As O∆ is a Dedekind domain, every ideal can be factored uniquely as a
product of prime ideals. We define the ideal class group as Cl(∆) := I∆/P∆,
where I∆ is the set of invertible ideals, and P∆ is the set of principal ideals of
O∆. This way, given two ideals a and b we have

[a] = [b] ∈ Cl(∆) ⇐⇒ ∃α ∈ K b = (α)a.



Cl(∆) is a finite group of cardinality h∆. To create M , we use sieving based
techniques to find relations of the form

(α) = pe1
1 . . . pen

n ,

where α ∈ K, and the pi are the prime ideals belonging to the set B of prime
ideals of norm bounded by a certain bound B. Every time such a relation is
found, we add the vector [e1, . . . , en] as a row of M . The most efficient way to
do this is to use an adapation of the multiple polynomial quadratic sieve due
to Jacobson [11], which was improved by Biasse [1] who used the large prime
variants. Under the generalized Riemann hypothesis (GRH), if B ≥ 6 log2 |∆|,
the lattice Λ generated by all the possible relations satisfies

Cl(∆) ' Zn/Λ.

A linear algebra phase consisting in the computation of the Smith Normal Form
(SNF) of M yields the group structure of Cl(∆).

The units of O∆ form a multiplicative group

U∆ ' µ∆ × {ε∆} (real) or U∆ ' µ∆ (imaginary),

where µ∆ are the roots of unity, and ε∆ is the fundamental unit. In the real
case, we compute the regulator R∆ := log |ε∆| by finding kernel vectors of M
during the linear algebra phase. Then, we give them as input to an algorithm
due to Maurer [16] along with the generators αi, i ≤ n of the relations. For
cryptographic applications, we focus on solving the discrete logarithm problem
(infrastructure DLP in the real case). Given two ideals a and b such that there
exists x ∈ Z with [b] = [a]x ∈ Cl(∆), we aim at finding x and log |α| mod R∆

where b = (α)ax. In imaginary fields (∆ < 0), α is trivial, and we only compute
x.

3 Structured Gaussian elimination

Before applying the linear algebra algorithms we mentioned, we perform a Gaus-
sian elimination step to reduce the dimensions of M . The main drawback of this
strategy is that the density and the size of the coefficients of the matrix increase
after each recombination of rows. We used a graph-based elimination strategy
first described by Cavallar [8] for factorization, and then adapted by Biasse [1] to
the context of number fields. Given a column involving N rows, this algorithm
finds an optimal recombination strategy between the rows with respect to a cost
function

C(r) :=
∑

1≤|ei|≤8

1 + 100
∑

|ej |>8

|ej |,

where r = [e1, . . . , en] is a row. This cost function penalizes rows with large
entries and high density. The first step of the algorithm is to build the complete
graph G having N edges, and whose vertices (i, j) are weighted by the cost of the



recombination involving the rows i and j according to C. Then, we compute the
minimum spanning tree T of G. Finally, we recombine the rows starting from
those corresponding to the leaves of T and finishing with its root. At the end, we
verify that the resulting matrix Mred has full rank with Linbox rank function.
If not, we add more rows and repeat the process.

To illustrate the impact of this structured Gaussian elimination strategy over
the naive Gaussian elimination, we monitored in Table 1 the evolution of the
dimensions of the matrix, the average Hamming weight of its rows, the extremal
values of its coefficients and the time taken for computing its HNF in the case
of a relation matrix corresponding to ∆ = 4(1060 + 3). We kept track of these
values after all i-way merges for some values of i between 5 and 170. The original
dimensions of the matrix were 2000× 1700, and the timings were obtained on a
2.4 Ghz Opteron with 32GB of memory.

Table 1. Comparative table of elimination strategies

Naive Gauss

i Row Nb Col Nb Average weight max coeff min coeff HNF time

5 1189 1067 27.9 14 -17 357.9
10 921 799 49.3 22 -19 184.8
30 757 635 112.7 51 -50 106.6
50 718 596 160.1 81 -91 93.7
70 699 577 186.3 116 -104 85.6
90 684 562 205.5 137 -90 79.0

125 664 542 249.0 140 -146 73.8
160 655 533 282.4 167 -155 72.0
170 654 532 286.4 167 -155 222.4

With dedicated elimination strategy

i Row Nb Col Nb Average weight max coeff min coeff HNF time

5 1200 1078 26.8 13 -12 368.0
10 928 806 42.6 20 -15 187.2
30 746 624 82.5 33 -27 100.8
50 702 580 107.6 64 -37 84.3
70 672 550 136.6 304 -676 73.4
90 656 534 157.6 1278 -1088 67.5

125 637 515 187.1 3360 -2942 63.4
160 619 497 214.6 5324 -3560 56.9
170 615 493 247.1 36761280 -22009088 192.6

Table 1 shows that the use of our elimination strategy led to a matrix with
smaller dimension (493 rows with our method, 533 with the naive elimination)
and lower density (the average weight of its rows is of 214 with our method and
282 with the naive elimination). These differences result in an improvement of



the time taken by the HNF computation: 56.9 with our method against 72.0
with the naive Gaussian elimination.

4 Regulator computation

To solve the infrastructure discrete logarithm problem, we first need to compute
an approximation of the regulator. For this purpose, we used an improved ver-
sion of Vollmer’s system solving based algorithm [24] described by Biasse and
Jacobson [2]. In order to find elements of the kernel, the algorithm creates extra
relations ri, 0 ≤ i ≤ k for some small integer k (in our experiments, we always
have k ≤ 10). Then, we solve the k linear systems XiM = ri using the function
certSolveRedLong from the IML library [22]. We augment M by adding the ri

as extra rows, and augment the vectors Xi with k − 1 zero coefficients and −1
at index n + i, yielding

M ′ :=


 M

ri


 , X ′

i :=
(

Xi 0 . . . 0 −1 0 . . . 0
)

.

The X ′
i are kernel vectors of M ′, which can be used along with the vector v

containing the real parts of the relations, to compute a multiple of the regulator
with Maurer’s algorithm [17, Sec 12.1]. As shown in Vollmer [24], this multiple is
equal to the regulator with high probability. In [2], it is shown that this method is
faster than the one requiring a kernel basis because it only requires the solution
to a few linear systems, and it can be adapted in such a way that the linear
system involves Mred.

To illustrate the impact of this algorithm, we used the relation matrix ob-
tained in the base case for discriminants of the form 4(10n +3) for n between 40
and 70. The timings are obtained on a 2.4GHz Opteron with 16GB of memory.
In Table 2, the timings corresponding to our system solving approach are taken

Table 2. Comparative table of regulator computation time

n Kernel Computation System Solving

40 15.0 6.2
45 18.0 8.3
50 38.0 20.0
55 257.0 49.0
60 286.0 103.0
65 5009.0 336.0
70 10030.0 643.0

with seven kernel vectors. However, in most cases only two or three vectors are



required to compute the regulator. As most of the time taken by our approach
is spent on system solving, we see that computing fewer kernel vectors would
result in an improvement of the timings, at the risk of obtaining a multiple of
the regulator.

5 Class group computation

The class group structure is obtained with the diagonal coefficients of the SNF
of M . Unfortunatelly, even after the Gaussian elimination, the dimensions of
Mred are too large to allow a direct SNF computation. We thus have to compute
the Hermite normal form (HNF) H of M first, and then to find the SNF of the
essential part of H. A matrix H is said to be in HNF if with ∀j < i : 0 ≤ hij < hii

and ∀j > i : hij = 0. For the imaginary case, we can use an algorithm due to
Vollmer [25] which requires solutions to linear systems. For each i ≤ n, we define
two matrices

Mi =




a1,1 . . . am,1

...
...

a1,i . . . am,i




and ei =




0
...
0

1




.

For each i, let hi be the minimal denominator of a rational solution of the system
Mix = ei solved using the function MinCertifiedSol of IML [22]. We have
h∆ =

∏
i hi, and an extra computation involving modular reductions yields the

essential part of the HNF of M . In most cases only a limited number of systems
are to be soved. In the real case, we used a modular HNF algorithm [20]. It
needs a multiple of h∆ in input. To compute this multiple, we took the GCD
of the determinants h1 and h2 of two n × n submatrices of M . We used the
determinant function of Linbox for this purpose, which is why we refer to this
strategy as NTL/Linbox in the following. Several implementations of an HNF
algorithm are available today. In this section, we compare the most efficient ones:
Magma, Sage, Kash, Pari to the methods we used in our computations. We used
Magma V2.11-2 whereas a new algorithm is used since V.2.14. According to the
developers’ webpage, this algorithm should be more efficient on random dense
matrices than the one we used, but we were not able to have it run on the same
plateform. Sage Version 4.1.1, which is open-source, has an HNF algorithm based
on the heuristic idea of Micciancio and Warinschi [18], which was analyzed and
implemented By Pernet and Stein [21]. We used Kash Version 4 and Pari-2.3.5
whose HNF algorithm is due to Batut. Note here that Kash and Pari’s algorithm
provide the unimodular transformation matrix corresponding to the operations
on the rows resulting in the HNF of the relation matrix. This step is not necessary
for the ideal class group computation and can be time consuming.



Algorithm 1 Essential part of the HNF
Input: ∆, relation matrix A ∈ Zm×n of full rank and h∗ such that h∗ ≤ h < 2h∗.
Output: The essential part of the HNF of A.

h← 1 , i← n , l← 1.
while h < h∗ do

Compute the minimal denominator hi of a solution −→vi of Ai · x = ei.
h← h · hi.
i← i− 1, l← l + 1.

end while
Let U be the l×m matrix whose rows are the −→vi for i ≤ l and H = (hij) be the l× l
submatrix of UA containing its last l rows.
for 2 ≤ i ≤ l do

hij ← hij mod hii for all j > i.
end for
return H.

We also assessed the performances of Vollmer’s algorithm on a single node,
and on a several nodes. We noted between brackets the minimum number of
nodes that is required to obtain the best performances in the parallelized version.

Table 3. Comparative timings of the HNF algorithms in the imaginary case

size |B| algorithm HNF time stdev

130 320

Pari 16,64 9,01
Kash 3,4 0,5
Sage 5,6 0,68

Magma 0,98 0,12
NTL/Linbox 2,37 0,34

Vollmer 2,2 1,04
Vollmer Par (6) 0,61 0,05

150 400

Pari 30,56 4,09
Kash 13,09 2,57
Sage 12,69 8,06

Magma 3,63 0,91
NTL/Linbox 6,61 0,74

Vollmer 7,12 3,54
Vollmer Par (7) 1,62 0,11

160 450

Pari 54.41 25.55
Kash 19,57 6,25
Sage 19,96 5,26

Magma 5,55 2,25
NTL/Linbox 8,67 2,39

Vollmer 8,02 2,62
Vollmer Par (6) 1,91 0,38



In Table 3, we compared the time for computing the HNF of a relation matrix
corresponding to negative discriminants of size ranging between 130 and 160 bits.
For each discriminant size, we drew five random fundamental discriminants and
computed a relation matrix on a 2.4 GHz Opteron with 8GB of memory. Unlike
for the other benchmarks, we did not draw random prime discriminants because
Vollmer’s algorithm tends to be faster when working with relation matrices cor-
responding to cyclic ideal class groups. We notice that the best performances
on a single are still optainded by Magma, but that the parallelized version of
Vollmer’s algorithm allows a significant speed-up if several nodes are available
for this computation. This opens the way to fully parallelized algorithms since
the relation collection phase is trivially parallelizable on as many nodes as we
want.

6 DLP solving

For solving the discrete logarithm problem, we implemented an algorithm due
to Vollmer [23] which also involves system solving. Given two ideals a and b
such that b = ax for some integer x, it consists of finding two extra relations
ra : (αa) = a ∗ pe1

1 . . . pen
n and rb : (αb) = b ∗ pf1

1 . . . pfn
n and extending the factor

base with two extra elements: B′ = B ∪ {a, b}. The extra relations are obtained
by multiplying a and b by random power products of primes in B and sieving
with the resulting ideal. Then, we construct the matrix

A′ :=




A (0)

rb

ra

1
0




,

and solve the system XA′ = (0, . . . , 0, 1). The last coordinate of X necessarily
equals −x. For each system, we used certSolveRedLong from the IML library
[22]. It appeared that it was faster than both kernel computation and HNF
computation. Testing the principality of an ideal I and finding α such that
(α) = I can be done by finding a power product satisfying I =

∏
i pei

i . Then,
we need to solve the system XM = b where b = [e1, . . . , en]. If this system has
a solution, then I is principal and its generator is α =

∏
i αxi

i where the αi

are the generators of the relations used for constructing M and the xi are the
coefficients of X. An algorithm of Maurer [16] computes log |α| mod R∆ given
R∆, (αi)i≤n and X.

To study the impact of Vollmer’s algorithm for solving the discrete logarithm
problem without computing the structure of Cl(∆), we provided numerical data
in Table 4 for discriminants of size between 140 and 220 bits. The timings, given
in CPU seconds, are averages of three different random prime discriminants,
obtained with 2.4 GHz Opterons with 8GB or memory. We denote by “DL”
the discrete logarithm computation using Vollmer’s method and by “CL” the



Table 4. Comparison between class group computation and Vollmer’s Algorithm

Size Strategy |B| Sieving Elimination Linear algebra Total

140
CL 200 2.66 0.63 1.79 5.08
DL 200 2.57 0.44 0.8 3.81

160
CL 300 11.77 1.04 8.20 21.01
DL 350 10.17 0.73 2.75 13.65

180
CL 400 17.47 0.98 12.83 31.28
DL 500 15.00 1.40 4.93 21.33

200
CL 800 158.27 7.82 81.84 247.93
DL 1000 126.61 9.9 21.45 157.96

220
CL 1500 619.99 20.99 457.45 1098.43
DL 1700 567.56 27.77 86.38 681.71

class group computation. We list the optimal factor base size for each algorithm
and discriminant size (obtained via additional numerical experiments), the time
for each of the main parts of the algorithm, and the total time. In all cases we
allowed two large primes and took enough relations to ensure that Mred have
full rank. Our results show that using Vollmer’s algorithm for computing discrete
logarithms is faster than the approach of [12] that also requires the class group.

7 Security estimates

As the relation collection clearly influences the overall time of the algorithm, we
classified the quadratic discriminants with respect to the difficulty to create the
relation matrix. During the sieving phase, we essentially test the smoothness of
ideals with respect to B. This boils down to testing the smoothness of norms with
respect to primes p such that there is a p ∈ B satisfying N (p) = p. Therefore, the
hardest discriminants will be those satisfying

(
∆
p

)
= −1 for the small primes.

When we choose discriminants at random, we cannot control this property, and
we thus observe a high standard deviation in the performances of the DLP
algorithms at a fixed discriminant size. To provide security estimates, we want
to choose our instances of the discrete logarithm problem amongst the easiest
ones, and ensure that the performances of the algorithm for solving the DLP are
regular. In our experiments, we studied the performances of Vollmer’s algorithm
for solving the discrete logarithm problem on imaginary discriminants of three
classes.

1. The easy discrimiants, satisfying
(

∆
p

)
= 1 for p = 2, 3, 5, 7, 11.

2. The intermediate discriminants, satisfying
(

∆
p

)
= −1 for p = 2, 3, 5, 7, 11

and
(

∆
p

)
= 1 for p = 13, 17, 19, 23, 31.

3. The hard discrinants, satisfying satisfying
(

∆
p

)
= −1 for p ≤ 31.



In Table 5, we randomly drew 10 negative prime discriminants of size 170,
190 and 210 bits for each class of discriminant, and computed the time to solve
an instance of the DLP. We used a 2,4 GHz Opteron with 32GB of memory and
counted the time in CPU seconds.

Table 5. Comparative table of DLP time for ∆ < 0

Easy Intermediate Hard

Size Average Stdev Average Stdev Average Stdev

170 22.1 4.7 65.5 18.7 103.0 26.5

190 70.3 13.3 162.7 25.5 224.8 32.26

210 257.7 26.0 655.7 99.7 885.5 152.1

We observe in Table 5 that the time taken to solve the discrete logarithm
problem corroborates the hypothesis we made on the difficulty of solving the
discrete logarithm problem on the classes of discriminants we described. For our
security estimates, we will take random discriminants belonging to the easy class,
unlike in [3], where we took random discriminants and thus observed timings with
large standard deviations. The rest of the methodology remains the same. We
first provide timings allowing ourselves to decide if the run time of our algorithm
follows the proven complexity O(L|∆|[1/2, 3

√
2/4 + o(1)], or the heuristic one

O(L|∆|[1/2, 1 + o(1)]). Then, we give the discriminant size required to provide
an equivalent level of security as the RSA moduli recommended by NIST [19]. We
assume that the run time of factoring algorithms follow the heuristic complexity
of the generalized number field sieve LN [1/3, 3

√
64/9 + o(1)], and follow the

approach of Hamdy and Möller [10] who used the equation

LN1 [e, c]
LN2 [e, c]

=
t1
t2

, (1)

to compute the run time t2 on input size N2, knowing the run time t1 on in-
put size N1. To date, the largest RSA number factored is RSA-768, a 768 bit
integer [15]. It is estimated in [15] that the total computation required 2000 2.2
GHz AMD Opteron years. As our computations were performed on a different
architecture, we follow Hamdy and Möller and use the MIPS-year measurement
to provide an architecture-neutral measurement. In this case, assuming that a
2.2 GHz AMD Opteron runs at 4400 MIPS, we estimate that this computation
took 8.8 × 106 MIPS-years. Using this estimate in conjunction with (1) yields
the estimated running times to factor RSA moduli of the sizes recommended by
NIST given in Table 6, where we focus on the three classes of discriminants and
compare them to random discriminants.

The results of our experiments for the imaginary case are given in Table 7,
and for the real case in Table 8. They were obtained on 2.4 GHz Xeon with
2GB of memory. For each bit length of ∆, denoted by “size(∆),” we list the



Table 6. Security Parameter Estimates

RSA ∆ < 0 (rnd.) ∆ < 0 (easy) ∆ < 0 (int.) ∆ < 0 (hard) Est. time (MIPS-years)

768 640 661 640 631 8.80× 106

1024 798 821 798 788 1.07× 1010

2048 1348 1378 1349 1337 1.25× 1019

3072 1827 1860 1827 1813 4.74× 1025

7680 3598 3643 3599 3579 1.06× 1045

15360 5971 6028 5972 5948 1.01× 1065

RSA ∆ > 0 (rnd.) ∆ > 0 (easy) ∆ > 0 (int.) ∆ > 0 (hard) Est. time (MIPS-years)

768 634 638 632 629 8.80× 106

1024 792 796 789 786 1.07× 1010

2048 1341 1346 1337 1334 1.25× 1019

3072 1818 1824 1814 1810 4.74× 1025

7680 3586 3594 3580 3575 1.06× 1045

15360 5957 5966 5949 5942 1.01× 1065

average time in seconds required to solve an instance of the appropriate discrete
logarithm problem (t∆) and standard deviation (std). For each size, we solved
10 instances of both problems. In both cases, we concluded that the run timed
was in O(L|∆|[1/2, 1 + o(1)]).
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Table 7. Average run times for the discrete logarithm problem in Cl∆, ∆ < 0

size(∆) t∆ (sec) std L|∆|[1/2,
√
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194 133.77 16.43 4.37× 1013 10.54× 108

196 167.70 21.11 4.37× 1013 9.86× 108

198 162.21 13.59 5.65× 1013 11.94× 108

200 195.29 24.69 5.87× 1013 11.61× 108

202 291.58 27.96 4.90× 1013 9.10× 108

204 292.70 42.55 6.09× 1013 10.59× 108

206 335.39 39.38 6.63× 1013 10.80× 108

208 360.00 51.24 7.69× 1013 11.75× 108

210 396.10 82.10 8.69× 1013 12.46× 108

212 448.85 72.62 9.53× 1013 12.82× 108

214 535.67 123.40 9.92× 1013 12.52× 108

216 595.56 109.94 11.07× 1013 13.12× 108

218 641.99 89.52 12.73× 1013 14.16× 108

220 829.98 151.75 12.19× 1013 12.74× 108

230 1564.74 226.924 18.60× 1013 14.27× 108

240 1564.74 226.924 52.48× 1013 29.71× 108

250 5552.59 953.788 40.94× 1013 17.20× 108



Table 8. Average run times for the infrastructure discrete logarithm problem.

size(∆) t∆ (sec) std L|∆|[1/2,
√

2]/t∆ L|∆|[1/2, 1]/t∆

140 3.66 3.00 2.38× 1012 3.86× 108

142 9.33 0.85 1.21× 1012 1.82× 108

144 10.49 1.00 1.39× 1012 1.94× 108

146 10.78 0.92 1.75× 1012 2.26× 108

148 10.21 1.32 2.38× 1012 2.86× 108

150 11.14 1.70 2.81× 1012 3.13× 108

152 12.29 1.39 3.27× 1012 3.39× 108

154 11.11 0.97 4.65× 1012 4.47× 108

156 14.58 2.59 4.54× 1012 4.06× 108

158 15.46 2.35 5.48× 1012 4.56× 108

160 15.72 2.21 6.89× 1012 5.34× 108

162 29.48 6.72 4.69× 1012 3.38× 108

164 31.71 3.49 5.56× 1012 3.73× 108

166 33.82 4.54 6.64× 1012 4.15× 108

168 37.61 4.95 7.60× 1012 4.43× 108

170 40.06 5.43 9.06× 1012 4.92× 108

172 42.63 5.80 10.80× 1012 5.48× 108

174 47.45 8.81 12.30× 1012 5.82× 108

176 50.73 8.92 14.56× 1012 6.43× 108

178 55.09 14.07 16.95× 1012 6.99× 108

180 65.12 25.86 18.11× 1012 6.97× 108

182 218.06 23.48 6.82× 1012 2.45× 108

184 204.61 18.27 9.16× 1012 3.08× 108

186 222.69 21.26 10.59× 1012 3.33× 108

188 220.46 22.92 13.45× 1012 3.95× 108

190 221.67 24.60 16.80× 1012 4.62× 108

192 232.10 27.68 2.01× 1013 5.18× 108

194 239.50 29.81 2.44× 1013 5.89× 108

196 307.33 38.90 2.38× 1013 5.38× 108

198 298.28 55.29 3.07× 1013 6.49× 108

200 337.96 73.80 3.39× 1013 6.71× 108

202 791.08 113.13 1.80× 1013 3.35× 108

204 888.10 95.55 2.01× 1013 3.49× 108

206 900.51 61.40 2.47× 1013 4.02× 108

208 871.15 80.96 3.17× 1013 4.85× 108

210 948.95 114.40 3.63× 1013 5.20× 108

212 1021.10 79.65 4.19× 1013 5.63× 108

214 1091.83 160.53 4.86× 1013 6.14× 108

216 1110.52 146.59 5.93× 1013 7.03× 108

218 1250.34 194.58 6.53× 1013 7.27× 108

220 1415.05 237.89 7.15× 1013 7.47× 108

230 4196.60 812.71 6.93× 1013 5.32× 108

240 6409.90 1097.76 12.81× 1013 7.25× 108

250 16253.60 2653.25 13.98× 1013 5.87× 108
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