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fatoring, and the lak of known relationships to other omputational problemsimplies that the breaking of other ryptosystems, suh as those based on elliptior hyperellipti urves, will not neessarily break those set in quadrati �elds.Examining the seurity of quadrati �eld based ryptosystems is therefore ofinterest.The fastest algorithms for solving disrete logarithm problem in quadrati�elds are based on an improved version of Buhmann's index-alulus algorithmdue to Jaobson [17℄. The algorithms inlude a number of pratial enhanementsto the original algorithm of Buhmann [5℄, inluding the use of self-initializedsieving to generate relations, a single large prime variant, and pratie-orientedalgorithms for the required linear algebra. These algorithms enabled the ompu-tation of a disrete logarithm in the lass group of an imaginary quadrati �eldwith 90 deimal digit disriminant [15℄, and the solution of the prinipal idealproblem for a real quadrati �eld with 65 deimal digit disriminant [18℄.Sine this work, a number of further improvements have been proposed. Bi-asse [3℄ presented pratial improvements to the orresponding algorithm forimaginary quadrati �elds, inluding a double large prime variant and improvedalgorithms for the required linear algebra. The resulting algorithm was indeedfaster then the previous state-of-the-art and enabled the omputation of the ideallass group of an imaginary quadrati �eld with 110 deimal digit disriminant.These improvements were adapted to the ase of real quadrati �elds by Biasseand Jaobson [4℄, along with the inorporation of a bath smoothness test ofBernstein [2℄, resulting in similar speed-ups in that ase.In this paper, we adapt the improvements of Biasse and Jaobson to theomputation of disrete logarithms in the lass group of an imaginary quadrati�eld and the prinipal ideal problem in the infrastruture of a real quadrati �eld.We use versions of the algorithms that rely on easier linear algebra problems thanthose desribed in [17℄. In the imaginary ase, this idea is due to Vollmer [26℄; ourwork represents the �rst implementation of his method. Our data obtained showsthat our algorithms are indeed faster than previous methods. We use our datato estimate parameter sizes for quadrati �eld ryptosystems that o�er seurityequivalent to NIST's �ve reommended seurity levels [25℄. In the imaginary ase,these reommendations update previous results of Hamdy and M�oller [14℄, andin the real ase this is the �rst time suh reommendations have been provided.The paper is organized as follows. In the next setion, we briey reall therequired bakground of ideal arithmeti in quadrati �elds, and give an overviewof the index-alulus algorithms for solving the two disrete logarithms in Se-tion 3. Our numerial results are desribed in Setion 4, followed by the seurityparameter estimates in Setion 5.2 Arithmeti in Quadrati FieldsWe begin with a brief overview of arithmeti in quadrati �elds. For more detailson the theory, algorithms, and ryptographi appliations of quadrati �elds, see[20℄.



Let K = Q(p�) be the quadrati �eld of disriminant �; where � is a non-zero integer ongruent to 0 or 1 modulo 4 with� or�=4 square-free. The integrallosure of Z in K, alled the maximal order, is denoted by O�: The ideals ofO� are the main objets of interest in terms of ryptographi appliations. Anideal an be represented by the two dimensional Z-modulea = s"aZ+ b+p�2 Z# ;where a; b; s 2 Z and 4a j b2 � �: The integers a and s are unique, and b isde�ned modulo 2a: The ideal a is said to be primitive if s = 1: The norm of a isgiven by N (a) = as2:Ideals an be multiplied using Gauss' omposition formulas for integral binaryquadrati forms. Ideal norm respets this operation. The prime ideals of O� havethe form pZ+(bp+p�)=2Zwhere p is a prime that is split or rami�ed in K; i.e.,the Kroneker symbol (�=p) 6= �1: As O� is a Dedekind domain, every idealan be fatored uniquely as a produt of prime ideals. To fator a; it suÆesto fator N (a) and, for eah prime p dividing the norm, determine whether theprime ideal p or p�1 divides a aording to whether b is ongruent to bp or �bpmodulo 2p:Two ideals a; b are said to be equivalent, denoted by a � b; if there exist�; � 2 O� suh that (�)a = (�)b; where (�) denotes the prinipal ideal generatedby �: This is in fat an equivalene relation, and the set of equivalene lassesforms a �nite abelian group alled the lass group, denoted by Cl�: Its order isalled the lass number, and is denoted by h�:Arithmeti in the lass group is performed on redued ideal representativesof the equivalene lasses. An ideal a is redued if it is primitive and N (a) isa minimum in a: Redued ideals have the property that a; b < pj�j; yieldingreasonably small representatives of eah group element. The group operationthen onsists of multiplying two redued ideals and omputing a redued idealequivalent to the produt. This operation is eÆient and an be performed inO(log2 j�j) bit operations.In the ase of imaginary quadrati �elds, we have h� � pj�j; and thatevery element in Cl� ontains exatly one redued ideal. Thus, the ideal lassgroup an be used as the basis of most publi-key ryptosystems that requirearithmeti in a �nite abelian group. The only wrinkle is that omputing the lassnumber h� seems to be as hard as solving the disrete logarithm problem, soonly ryptosystems for whih the group order is not known an be used.In real quadrati �elds, the lass group tends to be small; in fat, a onjetureof Gauss predits that h� = 1 in�nitely often, and the Cohen-Lenstra heuristis[11℄ predit that this happens about 75% of the time for prime disriminants.Thus, the disrete logarithm problem in the lass group is not in general suitablefor ryptographi use.Another onsequene of small lass groups in the real ase is that there areno longer unique redued ideal representatives in eah equivalene lass. Instead,we have that h�R� � p�; where the regulator R� roughly approximates how



many redued ideals are in eah equivalene lass. Thus, sine h� is frequentlysmall, there are roughly p� equivalent redued ideals in eah equivalene lass.The infrastruture, namely the set of redued prinipal ideals, is used for ryp-tographi purposes instead of the lass group. Although this struture is not a�nite abelian group, the analogue of exponentiation (omputing a redued prin-ipal ideal (�) with log� as lose to a given number as possible) is eÆient andan be used as a one-way problem suitable for publi-key ryptography. Theinverse of this problem, omputing an approximation of the unknown log� froma redued prinipal ideal given in Z-basis representation, is alled the prinipalideal problem or infrastruture disrete logarithm problem, and is believed to beof similar diÆulty to the disrete logarithm problem in the lass group of animaginary quadrati �eld.3 Solving The Disrete Logarithm ProblemsThe fastest algorithms in pratie for omputing disrete logarithms in the lassgroup and infrastruture use the index-alulus framework. Like other index-alulus algorithms, these algorithms rely on �nding ertain smooth quantities,those whose prime divisors are all small in some sense. In the ase of quadrati�elds, one searhes for smooth prinipal ideals for whih all prime ideal divisorshave norm less than a given bound B: The set of prime ideals p1; : : : ; pn withN (pi) � B is alled the fator base, denoted by B:A prinipal ideal (�) = pe11 � � � penn with � 2 K that fators ompletely overthe fator base yields the relation (e1; : : : ; en; log j�j): In the imaginary ase, thelog j�j oeÆients are not required and are ignored. The key to the index-alulusapproah is the fat, proved by Buhmann [5℄, that the set of all relations formsa sublattie � � Zn � R of determinant h�R� as long as the prime ideals inthe fator base generate Cl�: This follows, in part, due to the fat that L; theinteger omponent of �; is the kernel of the homomorphism � : Zn 7! Cl� givenby pe11 � � � penn for (e1; : : : ; en) 2 Zn: The homomorphism theorem then impliesthat Zn=L �= Cl�: In the imaginary ase, where the log j�j terms are omitted, therelation lattie onsists only of the integer part, and the orresponding resultswere proved by Hafner and MCurley [12℄.The main idea behind the algorithms desribed in [17℄ for solving the lassgroup and infrastruture disrete logarithm problems is to �nd random relationsuntil they generate the entire relation lattie �: Suppose A is a matrix whoserows ontain the integer oordinates of the relations, and v is a vetor ontainingthe real parts. To hek whether the relations generate �; we begin by omputingthe Hermite normal form of A and then alulating its determinant, giving us amultiple h of the lass number h�: We also ompute a multiple of the regulatorR�: Using the analyti lass number formula and Bah's L(1; �)-approximationmethod [1℄, we onstrut bounds suh that h�R� itself is the only integer mul-tiple of the produt of the lass number and regulator satisfying h� < h� < 2h�;if hR satis�es these bounds, then h and R are the orret lass number andregulator and the set of relations given in A generates �:



A multiple R of the regulator R� an be omputed either from a basis of thekernel of the row-spae of A (as in [17℄) or by randomly sampling from the kernelas desribed by Vollmer [27℄. Every kernel vetor x orresponds to a multiple ofthe regulator via x �v = mR�: Given v and a set of kernel vetors, an algorithmof Maurer [24, Se 12.1℄ is used to ompute the \real GCD" of the regulatormultiples with guaranteed numerial auray, where the real GCD of m1R�and m2R� is de�ned to be gd(m1;m2)R�:To solve the disrete logarithm problem in Cl�; we ompute the strutureof Cl�; i.e., integers m1; : : : ;mk with mi+1 j mi for i = 1; : : : ; k � 1 suh thatCl� �= Z=m1Z�� � ��Z=mkZ; and an expliit isomorphism from Zn to Z=m1Z�� � � � Z=mk: Then, to ompute x suh that gx � a; we �nd ideals equivalentto g and a that fator over the fator base and maps these vetors in Zn toZ=m1Z�� � ��Z=mk; where the disrete logarithm problem an be solved easily.To solve the infrastruture disrete logarithm problem for a; we �nd an idealequivalent to a that fators over the fator base. Suppose the fatorization isgiven by v 2 Zn: Then, sine L is the kernel of �; if a is prinipal, v must bea linear ombination of the elements of L: This an be determined by solvingxA = v; where as before the rows of A are the vetors in L: Furthermore, wehave log� = x � v (mod R�) is a solution to the infrastruture disrete loga-rithm problem. The approximation of log� is omputed to guaranteed numerialauray using another algorithm of Maurer [24, Se 5.5℄.If it is neessary to verify the solvability of the problem instane, then onemust verify that the relations generate all of �; for example, as desribed above.The best methods for this erti�ation are onditional on the Generalized Rie-mann Hypothesis, both for their expeted running time and their orretness.However, in a ryptographi appliation, it an safely be assumed that the prob-lem instane does have a solution (for example, if it omes from the DiÆe-Hellman key exhange protool), and simpli�ations are possible. In partiular,the orretness of the omputed solution an be determined without ertifyingthat the relations generate �; for example, by verifying that gx = a: As a result,the relatively expensive linear algebra required (omputing Hermite normal formand kernel of the row spae) an be replaed by linear system solving.In the imaginary ase, if the disrete logarithm is known to exist, one an usean algorithm due to Vollmer [26, 28℄. Instead of omputing the struture of Cl�;one �nds ideals equivalent to g and a that fator over the fator base. Then,ombining these fatorizations with the rest of the relations and solving a linearsystem yields a solution of the disrete logarithm problem. If the linear systemannot be solved, then the relations do not generate �; and the proess is simplyrepeated after generating some additional relations. The expeted asymptotiomplexity of this method, under reasonable assumptions about the generationof relations, is O(Lj�j[1=2; 3p2=4 + o(1)℄) [28, 6℄, whereLN [e; ℄ = exp � (logN)e(log logN)1�e�for e;  onstants and 0 � e � 1: In pratie, all the improvements to relation gen-eration and simplifying the relation matrix desribed in [3℄ an be applied. When



using pratial versions for generating relations, suh as sieving as desribed in[17℄, it is onjetured that the algorithm has omplexity O(Lj�j[1=2; 1+ o(1)℄):In the real ase, we also do not need to ompute the Hermite normal form,as only a multiple of R� suÆes. The onsequene of not ertifying that we havethe true regulator is that the solutions obtained for the infrastruture disretelogarithm problem may not be minimal. However, for ryptographi purposesthis is suÆient, as these values an still be used to break the orrespondingprotools in the same way that a non-minimal solution to the disrete loga-rithm problem suÆes to break group-based protools. Thus, we use Vollmer'sapproah [27℄ based on randomly sampling from the kernel of A: This methodomputes a multiple that is with high probability equal to the regulator in timeO(Lj�j[1=2; 3p2=4+ o(1)℄) by omputing the multiple orresponding to randomelements in the kernel of the row spae of A: These random elements an also befound by linear system solving. The resulting algorithm has the same omplexityas that in the imaginary ase. In pratie, all the improvements desribed in [4℄an be applied. When these are used, inluding sieving as desribed in [17℄, wealso onjeture that the algorithm has omplexity O(Lj�j[1=2; 1+ o(1)℄):4 Implementation and Numerial ResultsOur implementation takes advantage of the latest pratial improvements inideal lass group omputation and regulator omputation for quadrati number�elds, desribed in detail in [3, 4℄. In the following, we give a brief outline of themethods we used for the experiments desribed in this paper.To speed up the relation olletion phase, we ombined the double large primevariation with the self-initialized quadrati sieve strategy of [17℄, as desried in[3℄. This results in a onsiderable speed-up in the time required for �nding arelation, at the ost of a growth of the dimensions of the relation matrix. Wealso used Bernstein's bath smoothness test [2℄ to enhane the relation olletionphase as desribed in [4℄, by simultaneously testing residues produed by thesieve for smoothness.The algorithms involved in the linear algebra phase are highly sensitive to thedimensions of the relation matrix. As the double large prime variation induessigni�ant growth in the dimensions of the relation matrix, one needs to performGaussian elimination to redue the number of olumns in order to make thelinear algebra phase feasible. We used a graph-based elimination strategy �rstdesribed by Cavallar [9℄ for fatorization, and then adapted by Biasse [3℄ to theontext of quadrati �elds. At the end of the proess, we test if the resultingmatrix Ared has full rank by reduing it modulo a word-sized prime. If not, weollet more relation and repeat the algorithm.For solving the disrete logarithm problem in the imaginary ase, we imple-mented the algorithm due to Vollmer [26, 28℄ . Given two ideals a and g suhthat gx � a for some integer x, we �nd two extra relations (e1; : : : ; en; 1; 0) and(f1; : : : ; fn; 0; 1) suh that pe11 � � � penn g � (1) and pf11 � � � pfnn a�1 � (1) over the



extended fator base B [ �g; a�1	. The extra relations are obtained by multi-plying a�1 and g by random power produts of primes in B and sieving withthe resulting ideal to �nd an equivalent ideal that is smooth over B: One theserelations have been found, we onstrut the matrixA0 := 0BBBBB� A (0)e1 : : : enf1 : : : fn 1 00 1 1CCCCCA ;and solve the system xA0 = (0; : : : ; 0; 1). The last oordinate of x neessar-ily equals the disrete logarithm x. We used ertSolveRedLong from the IMLlibrary [10℄ to solve these linear systems.As the impat of Vollmer's and Bernstein's algorithms on the overall timefor lass group and disrete logarithm omputation in the imaginary ase hadnot been studied, we provide numerial data in Table 1 for disriminants of sizebetween 140 and 220 bits. The timings, given in seonds, are averages of threedi�erent random prime disriminants, obtained with 2.4 GHz Opterons with8GB or memory. We denote by \DL" the disrete logarithm omputation usingVollmer's method and by \CL" the lass group omputation. \CL Bath" and\DL Bath" denote the times obtained when also using Bernstein's algorithm.We list the optimal fator base size for eah algorithm and disriminant size(obtained via additional numerial experiments), the time for eah of the mainparts of the algorithm, and the total time. In all ases we allowed two large primesand took enough relations to ensure that Ared have full rank. Our results showthat enhaning relation generation with Bernstein's algorithm is bene�ial in allases. In addition, using Vollmer's algorithm for omputing disrete logarithmsis faster than the approah of [17℄ that also requires the lass group.To solve the infrastruture disrete logarithm problem, we �rst need to om-pute an approximation of the regulator. For this purpose, we used an improvedversion of Vollmer's system solving based algorithm [27℄ desribed by Biasseand Jaobson [4℄. In order to �nd elements of the kernel, the algorithm reatesextra relations ri, 0 � i � k for some small integer k (in our experiments, wealways have k � 10). Then, we solve the k linear systems XiA = ri using thefuntion ertSolveRedLong from the IML library [10℄. We augment the matrixA by adding the ri as extra rows, and augment the vetors Xi with k � 1 zerooeÆients and a �1 oeÆient at index n+ i; yieldingA0 := 0� Ari 1A ; X 0i := � Xi 0 : : : 0 �1 0 : : : 0 � :The X 0i are kernel vetors of A0; whih an be used along with the vetor vontaining the real parts of the relations, to ompute a multiple of the regulatorwith Maurer's algorithm [24, Se 12.1℄. As shown in Vollmer [27℄, this multiple is



Table 1. Comparison between lass group omputation and Vollmer AlgorithmSize Strategy jBj Sieving Elimination Linear algebra Total140 CL 200 2.66 0.63 1.79 5.08CL Bath 200 1.93 0.65 1.78 4.36DL 200 2.57 0.44 0.8 3.81DL bath 200 1.92 0.41 0.76 3.09160 CL 300 11.77 1.04 8.20 21.01CL Bath 300 9.91 0.87 8.19 18.97DL 350 10.17 0.73 2.75 13.65DL bath 400 6.80 0.96 3.05 10.81180 CL 400 17.47 0.98 12.83 31.28CL Bath 400 14.56 0.97 12.9 28.43DL 500 15.00 1.40 4.93 21.33DL bath 500 11.35 1.34 4.46 17.15200 CL 800 158.27 7.82 81.84 247.93CL Bath 800 133.78 7.82 81.58 223.18DL 1000 126.61 9.9 21.45 157.96DL bath 1100 85.00 11.21 26.85 123.06220 CL 1500 619.99 20.99 457.45 1098.43CL Bath 1500 529.59 19.56 447.29 996.44DL 1700 567.56 27.77 86.38 681.71DL bath 1600 540.37 24.23 73.76 638.36equal to the regulator with high probability. In [4℄, it is shown that this method isfaster than the one requiring a kernel basis beause it only requires the solutionto a few linear systems, and it an be adapted in suh a way that the linearsystem involves Ared.Our algorithm to solve the infrastruture disrete logarithm problem alsomakes use of the system solving algorithm. The input ideal a is �rst deomposedover the fator base, as in the imaginary ase, yielding the fatorization a =()p1e1 � � � pnen : Then, we solve the system xA = (e1; : : : ; en) and ompute anumerial approximation to guaranteed preision of log j�j modulo our regulatormultiple using Maurer's algorithm [24, Se 5.5℄ from ; the oeÆients of x; andthe real parts of the relation stored in v:The results of our experiments for the imaginary ase are given in Table 2,and for the real ase in Table 3. They were obtained on 2.4 GHz Xeon with2GB of memory. For eah bit length of �; denoted by \size(�)," we list theaverage time in seonds required to solve an instane of the appropriate disretelogarithm problem (t�) and standard deviation (std). In the imaginary ase, foreah disriminant size less than 220 bits, 14 instanes of the disrete logarithmproblem were solved. For size 230 and 256 we solved 10; and for size 280 and 300we solved 5 examples. In the real ase, 10 instanes were solved for eah size upto 256; 6 for size 280; and 4 for size 300:



Table 2. Average run times for the disrete logarithm problem in Cl�; � < 0size(�) t� (se) std Lj�j[1=2;p2℄=t� Lj�j[1=2; 1℄=t�140 7.89 2.33 6:44 � 108 1:79 � 108142 8.80 1.90 7:01 � 108 1:93 � 108144 9.91 3.13 7:55 � 108 2:06 � 108146 10.23 1.69 8:86 � 108 2:39 � 108148 11.80 3.45 9:29 � 108 2:48 � 108150 12.88 2.66 10:28 � 108 2:71 � 108152 14.42 3.38 11:09 � 108 2:89 � 108154 17.64 5.61 10:93 � 108 2:82 � 108156 22.06 5.57 10:53 � 108 2:69 � 108158 28.74 12.11 9:73 � 108 2:46 � 108160 27.12 8.77 12:39 � 108 3:10 � 108162 32.72 15.49 12:34 � 108 3:05 � 108164 31.08 6.85 15:58 � 108 3:82 � 108166 41.93 14.65 13:85 � 108 3:36 � 108168 51.92 16.51 13:39 � 108 3:21 � 108170 59.77 15.42 13:92 � 108 3:30 � 108172 68.39 17.79 14:54 � 108 3:42 � 108174 99.20 62.61 11:97 � 108 2:78 � 108176 124.86 80.29 11:35 � 108 2:61 � 108178 140.50 55.41 12:03 � 108 2:74 � 108180 202.42 145.98 9:94 � 108 2:24 � 108182 166.33 63.91 14:40 � 108 3:22 � 108184 150.76 58.37 18:90 � 108 4:18 � 108186 198.72 63.23 17:04 � 108 3:73 � 108188 225.90 94.94 17:79 � 108 3:86 � 108190 277.67 234.93 17:17 � 108 3:69 � 108192 348.88 134.36 16:20 � 108 3:45 � 108194 395.54 192.26 16:93 � 108 3:57 � 108196 547.33 272.83 14:48 � 108 3:02 � 108198 525.94 153.63 17:83 � 108 3:68 � 108200 565.43 182.75 1:96 � 109 4:01 � 108202 561.36 202.80 2:33 � 109 4:73 � 108204 535.29 205.68 2:89 � 109 5:80 � 108206 776.64 243.35 2:35 � 109 4:67 � 108208 677.43 200.08 3:17 � 109 6:25 � 108210 1050.64 501.31 2:41 � 109 4:70 � 108212 1189.71 410.98 2:50 � 109 4:84 � 108214 1104.83 308.57 3:17 � 109 6:07 � 108216 1417.64 352.27 2:90 � 109 5:51 � 108218 2185.80 798.95 2:21 � 109 4:16 � 108220 2559.79 1255.94 2:22 � 109 4:13 � 108230 3424.40 1255.94 3:66 � 109 6:52 � 108256 22992.70 13062.14 4:00 � 109 6:36 � 108280 88031.08 34148.54 6:09 � 109 8:76 � 108300 702142.20 334566.51 3:16 � 109 4:19 � 108



Table 3. Average run times for the infrastruture disrete logarithm problem.size(�) t� (se) std Lj�j[1=2;p2℄=t� Lj�j[1=2; 1℄=t�140 11.95 3.13 4:25 � 108 1:18 � 108142 12.47 2.06 4:95 � 108 1:36 � 108144 15.95 5.79 4:69 � 108 1:28 � 108146 14.61 2.94 6:20 � 108 1:67 � 108148 17.05 3.46 6:43 � 108 1:71 � 108150 21.65 4.55 6:12 � 108 1:61 � 108152 25.65 7.15 6:23 � 108 1:63 � 108154 29.01 6.97 6:65 � 108 1:72 � 108156 27.52 4.79 8:44 � 108 2:16 � 108158 33.59 8.80 8:32 � 108 2:10 � 108160 36.27 12.28 9:27 � 108 2:32 � 108162 43.55 10.73 9:27 � 108 2:29 � 108164 49.37 11.76 9:81 � 108 2:40 � 108166 59.73 17.18 9:72 � 108 2:36 � 108168 73.66 18.56 9:44 � 108 2:26 � 108170 75.50 19.80 1:10 � 109 2:62 � 108172 101.00 20.84 9:85 � 108 2:31 � 108174 94.80 38.87 1:25 � 109 2:91 � 108176 106.30 23.77 1:33 � 109 3:07 � 108178 149.70 44.04 1:13 � 109 2:57 � 108180 132.70 30.25 1:52 � 109 3:42 � 108182 178.80 25.67 1:34 � 109 2:99 � 108184 211.40 52.14 1:35 � 109 2:98 � 108186 258.20 110.95 1:31 � 109 2:87 � 108188 352.70 94.50 1:14 � 109 2:47 � 108190 290.90 46.57 1:64 � 109 3:52 � 108192 316.80 51.75 1:78 � 109 3:80 � 108194 412.90 71.90 1:62 � 109 3:42 � 108196 395.40 94.71 2:00 � 109 4:18 � 108198 492.30 156.69 1:90 � 109 3:94 � 108200 598.90 187.19 1:85 � 109 3:79 � 108202 791.40 285.74 1:65 � 109 3:35 � 108204 888.10 396.85 1:74 � 109 3:49 � 108206 928.40 311.37 1:96 � 109 3:90 � 108208 1036.10 260.82 2:07 � 109 4:08 � 108210 1262.30 415.32 2:00 � 109 3:91 � 108212 1582.30 377.22 1:88 � 109 3:64 � 108214 1545.10 432.42 2:27 � 109 4:34 � 108216 1450.80 453.85 2:84 � 109 5:39 � 108218 2105.00 650.64 2:30 � 109 4:32 � 108220 2435.70 802.57 2:33 � 109 4:34 � 108230 5680.90 1379.94 2:21 � 109 3:93 � 108256 29394.01 7824.15 3:13 � 109 4:98 � 108280 80962.80 27721.01 6:62 � 109 9:52 � 108300 442409.00 237989.12 5:01 � 109 6:64 � 108



For the extrapolations in the next setion, we need to have a good estimateof the asymptoti running time of the algorithm. As desribed in the previoussetion, the best proven run time is O(Lj�j[1=2; 3p2=4 + o(1)℄; but as we usesieving to generate relations, this an likely be redued to O(Lj�j[1=2; 1+o(1)℄):To test whih running time is most likely to hold for the algorithm we imple-mented, we list Lj�j[1=2; 3p2=4℄=t� and Lj�j[1=2; 1℄=t� in Table 2 and Table 3.In both ases, our data supports the hypothesis that the run time of our al-gorithm is indeed loser to O(Lj�j[1=2; 1 + o(1)℄); with the exeption of a fewoutliers orresponding to instanes where only a few instanes of the disretelogarithm were omputed for that size,5 Seurity EstimatesGeneral purpose reommendations for seurely hoosing disriminants for use inquadrati �eld ryptography an be found in [14℄ for the imaginary ase and [18℄for the real ase. In both ases, it usually suÆes to use prime disriminants,as this fores the lass number h� to be odd. In the imaginary ase, one thenrelies on the Cohen-Lenstra heuristis [11℄ to guarantee that the lass number isnot smooth with high probability. In the real ase, one uses the Cohen-Lenstraheuristis to guarantee that the lass number is very small (and that the infras-truture is therefore large) with high probability.Our goal is to estimate what bit lengths of appropriately-hosen disrimi-nants, in both the imaginary and real ases, are required to provide approxi-mately the same level of seurity as the RSA moduli reommended by NIST[25℄. The �ve seurity levels reommended by NIST orrespond to using seureblok iphers with keys of 80; 112; 128; 192; and 256 bits. The estimates usedby NIST indiate that RSA moduli of size 1024; 2048; 3072; 7680; and 15360should be used.To estimate the required sizes of disriminants, we follow the approah ofHamdy and M�oller [14℄, who provided suh estimates for the imaginary ase. Ourresults update these in the sense that our estimates are based on our improvedalgorithms for solving the disrete logarithms in quadrati �elds, as well as thelatest data available for fatoring large RSA moduli. Our estimates for realquadrati �elds are the �rst suh estimates produed.Following, Hamdy and M�oller, suppose that an algorithm with asymptotirunning time LN [e; ℄ runs in time t1 on input N1: Then, the running time t2 ofthe algorithm on input N2 an be estimated using the equationLN1 [e; ℄LN2 [e; ℄ = t1t2 : (1)We an also use the equation to estimate an input N2 that will ause the algo-rithm to have running time t2; again given the time t1 for input N1:The �rst step is to estimate the time required to fator the RSA numbersof the sizes reommended by NIST. The best algorithm for fatoring large inte-gers is the generalized number �eld sieve [22℄, whose asymptoti running time



is heuristially LN [1=3; 3p64=9 + o(1)℄: To date, the largest RSA number fa-tored is RSA-768, a 768 bit integer [21℄. It is estimated in [21℄ that the totalomputation required 2000 2:2 GHz AMD Opteron years. As our omputationswere performed on a di�erent arhiteture, we follow Hamdy and M�oller and usethe MIPS-year measurement to provide an arhiteture-neutral measurement.In this ase, assuming that a 2:2 GHz AMD Opteron runs at 4400 MIPS, weestimate that this omputation took 8:8� 106 MIPS-years. Using this estimatein onjuntion with (1) yields the estimated running times to fator RSA moduliof the sizes reommended by NIST given in Table 4. When using this method,we use N1 = 2768 and N2 = 2b; where b is the bit length of the RSA moduli forwhih we ompute a run time estimate.The seond step is to estimate the disriminant sizes for whih the disretelogarithm problems require approximately the same running time. The resultsin Table 2 and Table 3 suggest that LN [1=2; 1 + o(1)℄ is a good estimate of theasymptoti running time for both algorithms. Thus, we use LN [1=2; 1℄ in (1), asignoring the o(1) results in a onservative under-estimate of the atual runningtime. For N1 and t1; we take the largest disriminant size in eah table forwhih at least 10 instanes of the disrete logarithm problem were run and theorresponding running time (in MIPS-years); thus we used 256 in the imaginaryase and 230 in the real ase. We take for t2 the target running time in MIPS-years. To onvert the times in seonds from Table 2 and Table 3 to MIPS-years,we assume that the 2:4 GHz Intel Xeon mahine runs at 4800 MIPS. To �nd theorresponding disriminant size, we simply �nd the smallest integer b for whihL2b [1=2; 1℄ > LN1 [1=2; 1℄t2=t1:Our results are listed in Table 4. We list the size in bits of RSA moduli(denoted by \RSA"), disriminants of imaginary quadrati �elds (denoted by\� (imaginary)"), and real quadrati �elds (denoted by \� (real") for whihfatoring and the quadrati �eld disrete logarithm problems all have the sameestimated running time. For omparison purposes, we also list the disriminantsizes reommended in [14℄, denoted by \� (imaginary, old)." Note that theseestimates were based on di�erent equivalent MIPS-years running times, as thelargest fatoring e�ort at the time was RSA-512. In addition, they are based onan implementation of the imaginary quadrati �eld disrete logarithm algorithmfrom [17℄, whih is slower than the improved version from this paper. Conse-quently, our seurity parameter estimates are slightly larger than those from[14℄. We note also that the reommended disriminant sizes are slightly smallerin the real ase, as the infrastruture disrete logarithm problem requires moretime to solve on average than the disrete logarithm in the imaginary ase.6 ConlusionsIt is possible to produe more aurate seurity parameter estimates by takingmore fators into aount as is done, for example, by Lenstra and Verheul [23℄, aswell as using a more aurate performane measure than MIPS-year. However,our results nevertheless provide a good rough guideline on the required disrim-



Table 4. Seurity Parameter EstimatesRSA � (imaginary, old) � (imaginary) � (real) Est. run time (MIPS-years)768 540 640 634 8:80� 1061024 687 798 792 1:07 � 10102048 1208 1348 1341 1:25 � 10193072 1665 1827 1818 4:74 � 10257680 0 3598 3586 1:06 � 104515360 0 5971 5957 1:01 � 1065inant sizes that is likely suÆiently aurate in the inexat siene of preditingseurity levels.It would also be of interest to ondut a new omparison of the eÆieny ofRSA as ompared to the ryptosystems based on quadrati �elds. Due to the dif-ferenes in the asymptoti omplexities of integer fatorization and the disretelogarithm problems in quadrati �elds, it is lear that there is a point wherethe ryptosystems based on quadrati �elds will be faster than RSA. However,ideal arithmeti is somewhat more ompliated than the simple integer arith-meti required for RSA, and in fat Hamdy's onlusion [13℄ was that even withsmaller parameters, ryptography using quadrati �elds was not ompetitive atthe seurity levels of interest. There have been a number of reent advanes inideal arithmeti in both the imaginary and real ases (see, for example, [16℄ and[19℄) that warrant revisiting this issue.Referenes1. E. Bah, Expliit bounds for primality testing and related problems, Math. Comp.55 (1990), no. 191, 355{380.2. D. Bernstein, How to �nd smooth parts of integers, submitted to Mathematis ofComputation.3. J.-F. Biasse, Improvements in the omputation of ideal lass groups of imaginaryquadrati number �elds, To appear in Advanes in Mathematis of Communi-ations, see http://www.lix.polytehnique.fr/�biasse/papers/biasseCHILE.pdf.4. J.-F. Biasse and M. J. Jaobson, Jr., Pratial improvements to lass group andregulator omputation of real quadrati �elds, 2010, To appear in ANTS 9.5. J. Buhmann, A subexponential algorithm for the determination of lass groups andregulators of algebrai number �elds, S�eminaire de Th�eorie des Nombres (Paris),1988{89, pp. 27{41.6. J. Buhmann and U. Vollmer, Binary quadrati forms: An algorithmi approah,Algorithms and Computation in Mathematis, vol. 20, Springer-Verlag, Berlin,2007.7. J. Buhmann and H. C. Williams, A key-exhange system based on imaginaryquadrati �elds, Journal of Cryptology 1 (1988), 107{118.
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