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aAbstra
t. We des
ribe implementations for solving the dis
rete loga-rithm problem in the 
lass group of an imaginary quadrati
 �eld andin the infrastru
ture of a real quadrati
 �eld. The algorithms used in-
orporate improvements over previously-used algorithms, and extensivenumeri
al results are presented demonstrating their eÆ
ien
y. This datais used as the basis for extrapolations, used to provide re
ommendationsfor parameter sizes providing approximately the same level of se
urityas blo
k 
iphers with 80; 112; 128; 192; and 256-bit symmetri
 keys.1 Introdu
tionQuadrati
 �elds were proposed as a setting for publi
-key 
ryptosystems in thelate 1980s by Bu
hmann and Williams [7, 8℄. There are two types of quadrati
�elds, imaginary and real. In the imaginary 
ase, 
ryptosystems are based onarithmeti
 in the ideal 
lass group (a �nite abelian group), and the dis
retelogarithm problem is the 
omputational problem on whi
h the se
urity is based.In the real 
ase, the so-
alled infrastru
ture is used instead, and the se
urityis based on the analogue of the dis
rete logarithm problem in this stru
ture,namely the prin
ipal ideal problem.Although neither of these problems is resistant to quantum 
omputers, 
ryp-tography in quadrati
 �elds is nevertheless an interesting alternative to morewidely-used settings. Both dis
rete logarithm problems 
an be solved in subex-ponential time using index 
al
ulus algorithms, but with asymptoti
ally slower
omplexity than the state-of-the art algorithms for integer fa
torization and
omputing dis
rete logarithms in �nite �elds. In addition, the only known rela-tionship to the quadrati
 �eld dis
rete logarithm problems from other 
ompu-tational problems used in 
ryptography is that integer fa
torization redu
es toboth of the quadrati
 �eld problems. Thus, both of these are at least as hard as? The se
ond author is supported in part by NSERC of Canada.



fa
toring, and the la
k of known relationships to other 
omputational problemsimplies that the breaking of other 
ryptosystems, su
h as those based on ellipti
or hyperellipti
 
urves, will not ne
essarily break those set in quadrati
 �elds.Examining the se
urity of quadrati
 �eld based 
ryptosystems is therefore ofinterest.The fastest algorithms for solving dis
rete logarithm problem in quadrati
�elds are based on an improved version of Bu
hmann's index-
al
ulus algorithmdue to Ja
obson [17℄. The algorithms in
lude a number of pra
ti
al enhan
ementsto the original algorithm of Bu
hmann [5℄, in
luding the use of self-initializedsieving to generate relations, a single large prime variant, and pra
ti
e-orientedalgorithms for the required linear algebra. These algorithms enabled the 
ompu-tation of a dis
rete logarithm in the 
lass group of an imaginary quadrati
 �eldwith 90 de
imal digit dis
riminant [15℄, and the solution of the prin
ipal idealproblem for a real quadrati
 �eld with 65 de
imal digit dis
riminant [18℄.Sin
e this work, a number of further improvements have been proposed. Bi-asse [3℄ presented pra
ti
al improvements to the 
orresponding algorithm forimaginary quadrati
 �elds, in
luding a double large prime variant and improvedalgorithms for the required linear algebra. The resulting algorithm was indeedfaster then the previous state-of-the-art and enabled the 
omputation of the ideal
lass group of an imaginary quadrati
 �eld with 110 de
imal digit dis
riminant.These improvements were adapted to the 
ase of real quadrati
 �elds by Biasseand Ja
obson [4℄, along with the in
orporation of a bat
h smoothness test ofBernstein [2℄, resulting in similar speed-ups in that 
ase.In this paper, we adapt the improvements of Biasse and Ja
obson to the
omputation of dis
rete logarithms in the 
lass group of an imaginary quadrati
�eld and the prin
ipal ideal problem in the infrastru
ture of a real quadrati
 �eld.We use versions of the algorithms that rely on easier linear algebra problems thanthose des
ribed in [17℄. In the imaginary 
ase, this idea is due to Vollmer [26℄; ourwork represents the �rst implementation of his method. Our data obtained showsthat our algorithms are indeed faster than previous methods. We use our datato estimate parameter sizes for quadrati
 �eld 
ryptosystems that o�er se
urityequivalent to NIST's �ve re
ommended se
urity levels [25℄. In the imaginary 
ase,these re
ommendations update previous results of Hamdy and M�oller [14℄, andin the real 
ase this is the �rst time su
h re
ommendations have been provided.The paper is organized as follows. In the next se
tion, we brie
y re
all therequired ba
kground of ideal arithmeti
 in quadrati
 �elds, and give an overviewof the index-
al
ulus algorithms for solving the two dis
rete logarithms in Se
-tion 3. Our numeri
al results are des
ribed in Se
tion 4, followed by the se
urityparameter estimates in Se
tion 5.2 Arithmeti
 in Quadrati
 FieldsWe begin with a brief overview of arithmeti
 in quadrati
 �elds. For more detailson the theory, algorithms, and 
ryptographi
 appli
ations of quadrati
 �elds, see[20℄.



Let K = Q(p�) be the quadrati
 �eld of dis
riminant �; where � is a non-zero integer 
ongruent to 0 or 1 modulo 4 with� or�=4 square-free. The integral
losure of Z in K, 
alled the maximal order, is denoted by O�: The ideals ofO� are the main obje
ts of interest in terms of 
ryptographi
 appli
ations. Anideal 
an be represented by the two dimensional Z-modulea = s"aZ+ b+p�2 Z# ;where a; b; s 2 Z and 4a j b2 � �: The integers a and s are unique, and b isde�ned modulo 2a: The ideal a is said to be primitive if s = 1: The norm of a isgiven by N (a) = as2:Ideals 
an be multiplied using Gauss' 
omposition formulas for integral binaryquadrati
 forms. Ideal norm respe
ts this operation. The prime ideals of O� havethe form pZ+(bp+p�)=2Zwhere p is a prime that is split or rami�ed in K; i.e.,the Krone
ker symbol (�=p) 6= �1: As O� is a Dedekind domain, every ideal
an be fa
tored uniquely as a produ
t of prime ideals. To fa
tor a; it suÆ
esto fa
tor N (a) and, for ea
h prime p dividing the norm, determine whether theprime ideal p or p�1 divides a a

ording to whether b is 
ongruent to bp or �bpmodulo 2p:Two ideals a; b are said to be equivalent, denoted by a � b; if there exist�; � 2 O� su
h that (�)a = (�)b; where (�) denotes the prin
ipal ideal generatedby �: This is in fa
t an equivalen
e relation, and the set of equivalen
e 
lassesforms a �nite abelian group 
alled the 
lass group, denoted by Cl�: Its order is
alled the 
lass number, and is denoted by h�:Arithmeti
 in the 
lass group is performed on redu
ed ideal representativesof the equivalen
e 
lasses. An ideal a is redu
ed if it is primitive and N (a) isa minimum in a: Redu
ed ideals have the property that a; b < pj�j; yieldingreasonably small representatives of ea
h group element. The group operationthen 
onsists of multiplying two redu
ed ideals and 
omputing a redu
ed idealequivalent to the produ
t. This operation is eÆ
ient and 
an be performed inO(log2 j�j) bit operations.In the 
ase of imaginary quadrati
 �elds, we have h� � pj�j; and thatevery element in Cl� 
ontains exa
tly one redu
ed ideal. Thus, the ideal 
lassgroup 
an be used as the basis of most publi
-key 
ryptosystems that requirearithmeti
 in a �nite abelian group. The only wrinkle is that 
omputing the 
lassnumber h� seems to be as hard as solving the dis
rete logarithm problem, soonly 
ryptosystems for whi
h the group order is not known 
an be used.In real quadrati
 �elds, the 
lass group tends to be small; in fa
t, a 
onje
tureof Gauss predi
ts that h� = 1 in�nitely often, and the Cohen-Lenstra heuristi
s[11℄ predi
t that this happens about 75% of the time for prime dis
riminants.Thus, the dis
rete logarithm problem in the 
lass group is not in general suitablefor 
ryptographi
 use.Another 
onsequen
e of small 
lass groups in the real 
ase is that there areno longer unique redu
ed ideal representatives in ea
h equivalen
e 
lass. Instead,we have that h�R� � p�; where the regulator R� roughly approximates how



many redu
ed ideals are in ea
h equivalen
e 
lass. Thus, sin
e h� is frequentlysmall, there are roughly p� equivalent redu
ed ideals in ea
h equivalen
e 
lass.The infrastru
ture, namely the set of redu
ed prin
ipal ideals, is used for 
ryp-tographi
 purposes instead of the 
lass group. Although this stru
ture is not a�nite abelian group, the analogue of exponentiation (
omputing a redu
ed prin-
ipal ideal (�) with log� as 
lose to a given number as possible) is eÆ
ient and
an be used as a one-way problem suitable for publi
-key 
ryptography. Theinverse of this problem, 
omputing an approximation of the unknown log� froma redu
ed prin
ipal ideal given in Z-basis representation, is 
alled the prin
ipalideal problem or infrastru
ture dis
rete logarithm problem, and is believed to beof similar diÆ
ulty to the dis
rete logarithm problem in the 
lass group of animaginary quadrati
 �eld.3 Solving The Dis
rete Logarithm ProblemsThe fastest algorithms in pra
ti
e for 
omputing dis
rete logarithms in the 
lassgroup and infrastru
ture use the index-
al
ulus framework. Like other index-
al
ulus algorithms, these algorithms rely on �nding 
ertain smooth quantities,those whose prime divisors are all small in some sense. In the 
ase of quadrati
�elds, one sear
hes for smooth prin
ipal ideals for whi
h all prime ideal divisorshave norm less than a given bound B: The set of prime ideals p1; : : : ; pn withN (pi) � B is 
alled the fa
tor base, denoted by B:A prin
ipal ideal (�) = pe11 � � � penn with � 2 K that fa
tors 
ompletely overthe fa
tor base yields the relation (e1; : : : ; en; log j�j): In the imaginary 
ase, thelog j�j 
oeÆ
ients are not required and are ignored. The key to the index-
al
ulusapproa
h is the fa
t, proved by Bu
hmann [5℄, that the set of all relations formsa sublatti
e � � Zn � R of determinant h�R� as long as the prime ideals inthe fa
tor base generate Cl�: This follows, in part, due to the fa
t that L; theinteger 
omponent of �; is the kernel of the homomorphism � : Zn 7! Cl� givenby pe11 � � � penn for (e1; : : : ; en) 2 Zn: The homomorphism theorem then impliesthat Zn=L �= Cl�: In the imaginary 
ase, where the log j�j terms are omitted, therelation latti
e 
onsists only of the integer part, and the 
orresponding resultswere proved by Hafner and M
Curley [12℄.The main idea behind the algorithms des
ribed in [17℄ for solving the 
lassgroup and infrastru
ture dis
rete logarithm problems is to �nd random relationsuntil they generate the entire relation latti
e �: Suppose A is a matrix whoserows 
ontain the integer 
oordinates of the relations, and v is a ve
tor 
ontainingthe real parts. To 
he
k whether the relations generate �; we begin by 
omputingthe Hermite normal form of A and then 
al
ulating its determinant, giving us amultiple h of the 
lass number h�: We also 
ompute a multiple of the regulatorR�: Using the analyti
 
lass number formula and Ba
h's L(1; �)-approximationmethod [1℄, we 
onstru
t bounds su
h that h�R� itself is the only integer mul-tiple of the produ
t of the 
lass number and regulator satisfying h� < h� < 2h�;if hR satis�es these bounds, then h and R are the 
orre
t 
lass number andregulator and the set of relations given in A generates �:



A multiple R of the regulator R� 
an be 
omputed either from a basis of thekernel of the row-spa
e of A (as in [17℄) or by randomly sampling from the kernelas des
ribed by Vollmer [27℄. Every kernel ve
tor x 
orresponds to a multiple ofthe regulator via x �v = mR�: Given v and a set of kernel ve
tors, an algorithmof Maurer [24, Se
 12.1℄ is used to 
ompute the \real GCD" of the regulatormultiples with guaranteed numeri
al a

ura
y, where the real GCD of m1R�and m2R� is de�ned to be g
d(m1;m2)R�:To solve the dis
rete logarithm problem in Cl�; we 
ompute the stru
tureof Cl�; i.e., integers m1; : : : ;mk with mi+1 j mi for i = 1; : : : ; k � 1 su
h thatCl� �= Z=m1Z�� � ��Z=mkZ; and an expli
it isomorphism from Zn to Z=m1Z�� � � � Z=mk: Then, to 
ompute x su
h that gx � a; we �nd ideals equivalentto g and a that fa
tor over the fa
tor base and maps these ve
tors in Zn toZ=m1Z�� � ��Z=mk; where the dis
rete logarithm problem 
an be solved easily.To solve the infrastru
ture dis
rete logarithm problem for a; we �nd an idealequivalent to a that fa
tors over the fa
tor base. Suppose the fa
torization isgiven by v 2 Zn: Then, sin
e L is the kernel of �; if a is prin
ipal, v must bea linear 
ombination of the elements of L: This 
an be determined by solvingxA = v; where as before the rows of A are the ve
tors in L: Furthermore, wehave log� = x � v (mod R�) is a solution to the infrastru
ture dis
rete loga-rithm problem. The approximation of log� is 
omputed to guaranteed numeri
ala

ura
y using another algorithm of Maurer [24, Se
 5.5℄.If it is ne
essary to verify the solvability of the problem instan
e, then onemust verify that the relations generate all of �; for example, as des
ribed above.The best methods for this 
erti�
ation are 
onditional on the Generalized Rie-mann Hypothesis, both for their expe
ted running time and their 
orre
tness.However, in a 
ryptographi
 appli
ation, it 
an safely be assumed that the prob-lem instan
e does have a solution (for example, if it 
omes from the DiÆe-Hellman key ex
hange proto
ol), and simpli�
ations are possible. In parti
ular,the 
orre
tness of the 
omputed solution 
an be determined without 
ertifyingthat the relations generate �; for example, by verifying that gx = a: As a result,the relatively expensive linear algebra required (
omputing Hermite normal formand kernel of the row spa
e) 
an be repla
ed by linear system solving.In the imaginary 
ase, if the dis
rete logarithm is known to exist, one 
an usean algorithm due to Vollmer [26, 28℄. Instead of 
omputing the stru
ture of Cl�;one �nds ideals equivalent to g and a that fa
tor over the fa
tor base. Then,
ombining these fa
torizations with the rest of the relations and solving a linearsystem yields a solution of the dis
rete logarithm problem. If the linear system
annot be solved, then the relations do not generate �; and the pro
ess is simplyrepeated after generating some additional relations. The expe
ted asymptoti

omplexity of this method, under reasonable assumptions about the generationof relations, is O(Lj�j[1=2; 3p2=4 + o(1)℄) [28, 6℄, whereLN [e; 
℄ = exp �
 (logN)e(log logN)1�e�for e; 
 
onstants and 0 � e � 1: In pra
ti
e, all the improvements to relation gen-eration and simplifying the relation matrix des
ribed in [3℄ 
an be applied. When



using pra
ti
al versions for generating relations, su
h as sieving as des
ribed in[17℄, it is 
onje
tured that the algorithm has 
omplexity O(Lj�j[1=2; 1+ o(1)℄):In the real 
ase, we also do not need to 
ompute the Hermite normal form,as only a multiple of R� suÆ
es. The 
onsequen
e of not 
ertifying that we havethe true regulator is that the solutions obtained for the infrastru
ture dis
retelogarithm problem may not be minimal. However, for 
ryptographi
 purposesthis is suÆ
ient, as these values 
an still be used to break the 
orrespondingproto
ols in the same way that a non-minimal solution to the dis
rete loga-rithm problem suÆ
es to break group-based proto
ols. Thus, we use Vollmer'sapproa
h [27℄ based on randomly sampling from the kernel of A: This method
omputes a multiple that is with high probability equal to the regulator in timeO(Lj�j[1=2; 3p2=4+ o(1)℄) by 
omputing the multiple 
orresponding to randomelements in the kernel of the row spa
e of A: These random elements 
an also befound by linear system solving. The resulting algorithm has the same 
omplexityas that in the imaginary 
ase. In pra
ti
e, all the improvements des
ribed in [4℄
an be applied. When these are used, in
luding sieving as des
ribed in [17℄, wealso 
onje
ture that the algorithm has 
omplexity O(Lj�j[1=2; 1+ o(1)℄):4 Implementation and Numeri
al ResultsOur implementation takes advantage of the latest pra
ti
al improvements inideal 
lass group 
omputation and regulator 
omputation for quadrati
 number�elds, des
ribed in detail in [3, 4℄. In the following, we give a brief outline of themethods we used for the experiments des
ribed in this paper.To speed up the relation 
olle
tion phase, we 
ombined the double large primevariation with the self-initialized quadrati
 sieve strategy of [17℄, as des
ried in[3℄. This results in a 
onsiderable speed-up in the time required for �nding arelation, at the 
ost of a growth of the dimensions of the relation matrix. Wealso used Bernstein's bat
h smoothness test [2℄ to enhan
e the relation 
olle
tionphase as des
ribed in [4℄, by simultaneously testing residues produ
ed by thesieve for smoothness.The algorithms involved in the linear algebra phase are highly sensitive to thedimensions of the relation matrix. As the double large prime variation indu
essigni�
ant growth in the dimensions of the relation matrix, one needs to performGaussian elimination to redu
e the number of 
olumns in order to make thelinear algebra phase feasible. We used a graph-based elimination strategy �rstdes
ribed by Cavallar [9℄ for fa
torization, and then adapted by Biasse [3℄ to the
ontext of quadrati
 �elds. At the end of the pro
ess, we test if the resultingmatrix Ared has full rank by redu
ing it modulo a word-sized prime. If not, we
olle
t more relation and repeat the algorithm.For solving the dis
rete logarithm problem in the imaginary 
ase, we imple-mented the algorithm due to Vollmer [26, 28℄ . Given two ideals a and g su
hthat gx � a for some integer x, we �nd two extra relations (e1; : : : ; en; 1; 0) and(f1; : : : ; fn; 0; 1) su
h that pe11 � � � penn g � (1) and pf11 � � � pfnn a�1 � (1) over the



extended fa
tor base B [ �g; a�1	. The extra relations are obtained by multi-plying a�1 and g by random power produ
ts of primes in B and sieving withthe resulting ideal to �nd an equivalent ideal that is smooth over B: On
e theserelations have been found, we 
onstru
t the matrixA0 := 0BBBBB� A (0)e1 : : : enf1 : : : fn 1 00 1 1CCCCCA ;and solve the system xA0 = (0; : : : ; 0; 1). The last 
oordinate of x ne
essar-ily equals the dis
rete logarithm x. We used 
ertSolveRedLong from the IMLlibrary [10℄ to solve these linear systems.As the impa
t of Vollmer's and Bernstein's algorithms on the overall timefor 
lass group and dis
rete logarithm 
omputation in the imaginary 
ase hadnot been studied, we provide numeri
al data in Table 1 for dis
riminants of sizebetween 140 and 220 bits. The timings, given in se
onds, are averages of threedi�erent random prime dis
riminants, obtained with 2.4 GHz Opterons with8GB or memory. We denote by \DL" the dis
rete logarithm 
omputation usingVollmer's method and by \CL" the 
lass group 
omputation. \CL Bat
h" and\DL Bat
h" denote the times obtained when also using Bernstein's algorithm.We list the optimal fa
tor base size for ea
h algorithm and dis
riminant size(obtained via additional numeri
al experiments), the time for ea
h of the mainparts of the algorithm, and the total time. In all 
ases we allowed two large primesand took enough relations to ensure that Ared have full rank. Our results showthat enhan
ing relation generation with Bernstein's algorithm is bene�
ial in all
ases. In addition, using Vollmer's algorithm for 
omputing dis
rete logarithmsis faster than the approa
h of [17℄ that also requires the 
lass group.To solve the infrastru
ture dis
rete logarithm problem, we �rst need to 
om-pute an approximation of the regulator. For this purpose, we used an improvedversion of Vollmer's system solving based algorithm [27℄ des
ribed by Biasseand Ja
obson [4℄. In order to �nd elements of the kernel, the algorithm 
reatesextra relations ri, 0 � i � k for some small integer k (in our experiments, wealways have k � 10). Then, we solve the k linear systems XiA = ri using thefun
tion 
ertSolveRedLong from the IML library [10℄. We augment the matrixA by adding the ri as extra rows, and augment the ve
tors Xi with k � 1 zero
oeÆ
ients and a �1 
oeÆ
ient at index n+ i; yieldingA0 := 0� Ari 1A ; X 0i := � Xi 0 : : : 0 �1 0 : : : 0 � :The X 0i are kernel ve
tors of A0; whi
h 
an be used along with the ve
tor v
ontaining the real parts of the relations, to 
ompute a multiple of the regulatorwith Maurer's algorithm [24, Se
 12.1℄. As shown in Vollmer [27℄, this multiple is



Table 1. Comparison between 
lass group 
omputation and Vollmer AlgorithmSize Strategy jBj Sieving Elimination Linear algebra Total140 CL 200 2.66 0.63 1.79 5.08CL Bat
h 200 1.93 0.65 1.78 4.36DL 200 2.57 0.44 0.8 3.81DL bat
h 200 1.92 0.41 0.76 3.09160 CL 300 11.77 1.04 8.20 21.01CL Bat
h 300 9.91 0.87 8.19 18.97DL 350 10.17 0.73 2.75 13.65DL bat
h 400 6.80 0.96 3.05 10.81180 CL 400 17.47 0.98 12.83 31.28CL Bat
h 400 14.56 0.97 12.9 28.43DL 500 15.00 1.40 4.93 21.33DL bat
h 500 11.35 1.34 4.46 17.15200 CL 800 158.27 7.82 81.84 247.93CL Bat
h 800 133.78 7.82 81.58 223.18DL 1000 126.61 9.9 21.45 157.96DL bat
h 1100 85.00 11.21 26.85 123.06220 CL 1500 619.99 20.99 457.45 1098.43CL Bat
h 1500 529.59 19.56 447.29 996.44DL 1700 567.56 27.77 86.38 681.71DL bat
h 1600 540.37 24.23 73.76 638.36equal to the regulator with high probability. In [4℄, it is shown that this method isfaster than the one requiring a kernel basis be
ause it only requires the solutionto a few linear systems, and it 
an be adapted in su
h a way that the linearsystem involves Ared.Our algorithm to solve the infrastru
ture dis
rete logarithm problem alsomakes use of the system solving algorithm. The input ideal a is �rst de
omposedover the fa
tor base, as in the imaginary 
ase, yielding the fa
torization a =(
)p1e1 � � � pnen : Then, we solve the system xA = (e1; : : : ; en) and 
ompute anumeri
al approximation to guaranteed pre
ision of log j�j modulo our regulatormultiple using Maurer's algorithm [24, Se
 5.5℄ from 
; the 
oeÆ
ients of x; andthe real parts of the relation stored in v:The results of our experiments for the imaginary 
ase are given in Table 2,and for the real 
ase in Table 3. They were obtained on 2.4 GHz Xeon with2GB of memory. For ea
h bit length of �; denoted by \size(�)," we list theaverage time in se
onds required to solve an instan
e of the appropriate dis
retelogarithm problem (t�) and standard deviation (std). In the imaginary 
ase, forea
h dis
riminant size less than 220 bits, 14 instan
es of the dis
rete logarithmproblem were solved. For size 230 and 256 we solved 10; and for size 280 and 300we solved 5 examples. In the real 
ase, 10 instan
es were solved for ea
h size upto 256; 6 for size 280; and 4 for size 300:



Table 2. Average run times for the dis
rete logarithm problem in Cl�; � < 0size(�) t� (se
) std Lj�j[1=2;p2℄=t� Lj�j[1=2; 1℄=t�140 7.89 2.33 6:44 � 108 1:79 � 108142 8.80 1.90 7:01 � 108 1:93 � 108144 9.91 3.13 7:55 � 108 2:06 � 108146 10.23 1.69 8:86 � 108 2:39 � 108148 11.80 3.45 9:29 � 108 2:48 � 108150 12.88 2.66 10:28 � 108 2:71 � 108152 14.42 3.38 11:09 � 108 2:89 � 108154 17.64 5.61 10:93 � 108 2:82 � 108156 22.06 5.57 10:53 � 108 2:69 � 108158 28.74 12.11 9:73 � 108 2:46 � 108160 27.12 8.77 12:39 � 108 3:10 � 108162 32.72 15.49 12:34 � 108 3:05 � 108164 31.08 6.85 15:58 � 108 3:82 � 108166 41.93 14.65 13:85 � 108 3:36 � 108168 51.92 16.51 13:39 � 108 3:21 � 108170 59.77 15.42 13:92 � 108 3:30 � 108172 68.39 17.79 14:54 � 108 3:42 � 108174 99.20 62.61 11:97 � 108 2:78 � 108176 124.86 80.29 11:35 � 108 2:61 � 108178 140.50 55.41 12:03 � 108 2:74 � 108180 202.42 145.98 9:94 � 108 2:24 � 108182 166.33 63.91 14:40 � 108 3:22 � 108184 150.76 58.37 18:90 � 108 4:18 � 108186 198.72 63.23 17:04 � 108 3:73 � 108188 225.90 94.94 17:79 � 108 3:86 � 108190 277.67 234.93 17:17 � 108 3:69 � 108192 348.88 134.36 16:20 � 108 3:45 � 108194 395.54 192.26 16:93 � 108 3:57 � 108196 547.33 272.83 14:48 � 108 3:02 � 108198 525.94 153.63 17:83 � 108 3:68 � 108200 565.43 182.75 1:96 � 109 4:01 � 108202 561.36 202.80 2:33 � 109 4:73 � 108204 535.29 205.68 2:89 � 109 5:80 � 108206 776.64 243.35 2:35 � 109 4:67 � 108208 677.43 200.08 3:17 � 109 6:25 � 108210 1050.64 501.31 2:41 � 109 4:70 � 108212 1189.71 410.98 2:50 � 109 4:84 � 108214 1104.83 308.57 3:17 � 109 6:07 � 108216 1417.64 352.27 2:90 � 109 5:51 � 108218 2185.80 798.95 2:21 � 109 4:16 � 108220 2559.79 1255.94 2:22 � 109 4:13 � 108230 3424.40 1255.94 3:66 � 109 6:52 � 108256 22992.70 13062.14 4:00 � 109 6:36 � 108280 88031.08 34148.54 6:09 � 109 8:76 � 108300 702142.20 334566.51 3:16 � 109 4:19 � 108



Table 3. Average run times for the infrastru
ture dis
rete logarithm problem.size(�) t� (se
) std Lj�j[1=2;p2℄=t� Lj�j[1=2; 1℄=t�140 11.95 3.13 4:25 � 108 1:18 � 108142 12.47 2.06 4:95 � 108 1:36 � 108144 15.95 5.79 4:69 � 108 1:28 � 108146 14.61 2.94 6:20 � 108 1:67 � 108148 17.05 3.46 6:43 � 108 1:71 � 108150 21.65 4.55 6:12 � 108 1:61 � 108152 25.65 7.15 6:23 � 108 1:63 � 108154 29.01 6.97 6:65 � 108 1:72 � 108156 27.52 4.79 8:44 � 108 2:16 � 108158 33.59 8.80 8:32 � 108 2:10 � 108160 36.27 12.28 9:27 � 108 2:32 � 108162 43.55 10.73 9:27 � 108 2:29 � 108164 49.37 11.76 9:81 � 108 2:40 � 108166 59.73 17.18 9:72 � 108 2:36 � 108168 73.66 18.56 9:44 � 108 2:26 � 108170 75.50 19.80 1:10 � 109 2:62 � 108172 101.00 20.84 9:85 � 108 2:31 � 108174 94.80 38.87 1:25 � 109 2:91 � 108176 106.30 23.77 1:33 � 109 3:07 � 108178 149.70 44.04 1:13 � 109 2:57 � 108180 132.70 30.25 1:52 � 109 3:42 � 108182 178.80 25.67 1:34 � 109 2:99 � 108184 211.40 52.14 1:35 � 109 2:98 � 108186 258.20 110.95 1:31 � 109 2:87 � 108188 352.70 94.50 1:14 � 109 2:47 � 108190 290.90 46.57 1:64 � 109 3:52 � 108192 316.80 51.75 1:78 � 109 3:80 � 108194 412.90 71.90 1:62 � 109 3:42 � 108196 395.40 94.71 2:00 � 109 4:18 � 108198 492.30 156.69 1:90 � 109 3:94 � 108200 598.90 187.19 1:85 � 109 3:79 � 108202 791.40 285.74 1:65 � 109 3:35 � 108204 888.10 396.85 1:74 � 109 3:49 � 108206 928.40 311.37 1:96 � 109 3:90 � 108208 1036.10 260.82 2:07 � 109 4:08 � 108210 1262.30 415.32 2:00 � 109 3:91 � 108212 1582.30 377.22 1:88 � 109 3:64 � 108214 1545.10 432.42 2:27 � 109 4:34 � 108216 1450.80 453.85 2:84 � 109 5:39 � 108218 2105.00 650.64 2:30 � 109 4:32 � 108220 2435.70 802.57 2:33 � 109 4:34 � 108230 5680.90 1379.94 2:21 � 109 3:93 � 108256 29394.01 7824.15 3:13 � 109 4:98 � 108280 80962.80 27721.01 6:62 � 109 9:52 � 108300 442409.00 237989.12 5:01 � 109 6:64 � 108



For the extrapolations in the next se
tion, we need to have a good estimateof the asymptoti
 running time of the algorithm. As des
ribed in the previousse
tion, the best proven run time is O(Lj�j[1=2; 3p2=4 + o(1)℄; but as we usesieving to generate relations, this 
an likely be redu
ed to O(Lj�j[1=2; 1+o(1)℄):To test whi
h running time is most likely to hold for the algorithm we imple-mented, we list Lj�j[1=2; 3p2=4℄=t� and Lj�j[1=2; 1℄=t� in Table 2 and Table 3.In both 
ases, our data supports the hypothesis that the run time of our al-gorithm is indeed 
loser to O(Lj�j[1=2; 1 + o(1)℄); with the ex
eption of a fewoutliers 
orresponding to instan
es where only a few instan
es of the dis
retelogarithm were 
omputed for that size,5 Se
urity EstimatesGeneral purpose re
ommendations for se
urely 
hoosing dis
riminants for use inquadrati
 �eld 
ryptography 
an be found in [14℄ for the imaginary 
ase and [18℄for the real 
ase. In both 
ases, it usually suÆ
es to use prime dis
riminants,as this for
es the 
lass number h� to be odd. In the imaginary 
ase, one thenrelies on the Cohen-Lenstra heuristi
s [11℄ to guarantee that the 
lass number isnot smooth with high probability. In the real 
ase, one uses the Cohen-Lenstraheuristi
s to guarantee that the 
lass number is very small (and that the infras-tru
ture is therefore large) with high probability.Our goal is to estimate what bit lengths of appropriately-
hosen dis
rimi-nants, in both the imaginary and real 
ases, are required to provide approxi-mately the same level of se
urity as the RSA moduli re
ommended by NIST[25℄. The �ve se
urity levels re
ommended by NIST 
orrespond to using se
ureblo
k 
iphers with keys of 80; 112; 128; 192; and 256 bits. The estimates usedby NIST indi
ate that RSA moduli of size 1024; 2048; 3072; 7680; and 15360should be used.To estimate the required sizes of dis
riminants, we follow the approa
h ofHamdy and M�oller [14℄, who provided su
h estimates for the imaginary 
ase. Ourresults update these in the sense that our estimates are based on our improvedalgorithms for solving the dis
rete logarithms in quadrati
 �elds, as well as thelatest data available for fa
toring large RSA moduli. Our estimates for realquadrati
 �elds are the �rst su
h estimates produ
ed.Following, Hamdy and M�oller, suppose that an algorithm with asymptoti
running time LN [e; 
℄ runs in time t1 on input N1: Then, the running time t2 ofthe algorithm on input N2 
an be estimated using the equationLN1 [e; 
℄LN2 [e; 
℄ = t1t2 : (1)We 
an also use the equation to estimate an input N2 that will 
ause the algo-rithm to have running time t2; again given the time t1 for input N1:The �rst step is to estimate the time required to fa
tor the RSA numbersof the sizes re
ommended by NIST. The best algorithm for fa
toring large inte-gers is the generalized number �eld sieve [22℄, whose asymptoti
 running time



is heuristi
ally LN [1=3; 3p64=9 + o(1)℄: To date, the largest RSA number fa
-tored is RSA-768, a 768 bit integer [21℄. It is estimated in [21℄ that the total
omputation required 2000 2:2 GHz AMD Opteron years. As our 
omputationswere performed on a di�erent ar
hite
ture, we follow Hamdy and M�oller and usethe MIPS-year measurement to provide an ar
hite
ture-neutral measurement.In this 
ase, assuming that a 2:2 GHz AMD Opteron runs at 4400 MIPS, weestimate that this 
omputation took 8:8� 106 MIPS-years. Using this estimatein 
onjun
tion with (1) yields the estimated running times to fa
tor RSA moduliof the sizes re
ommended by NIST given in Table 4. When using this method,we use N1 = 2768 and N2 = 2b; where b is the bit length of the RSA moduli forwhi
h we 
ompute a run time estimate.The se
ond step is to estimate the dis
riminant sizes for whi
h the dis
retelogarithm problems require approximately the same running time. The resultsin Table 2 and Table 3 suggest that LN [1=2; 1 + o(1)℄ is a good estimate of theasymptoti
 running time for both algorithms. Thus, we use LN [1=2; 1℄ in (1), asignoring the o(1) results in a 
onservative under-estimate of the a
tual runningtime. For N1 and t1; we take the largest dis
riminant size in ea
h table forwhi
h at least 10 instan
es of the dis
rete logarithm problem were run and the
orresponding running time (in MIPS-years); thus we used 256 in the imaginary
ase and 230 in the real 
ase. We take for t2 the target running time in MIPS-years. To 
onvert the times in se
onds from Table 2 and Table 3 to MIPS-years,we assume that the 2:4 GHz Intel Xeon ma
hine runs at 4800 MIPS. To �nd the
orresponding dis
riminant size, we simply �nd the smallest integer b for whi
hL2b [1=2; 1℄ > LN1 [1=2; 1℄t2=t1:Our results are listed in Table 4. We list the size in bits of RSA moduli(denoted by \RSA"), dis
riminants of imaginary quadrati
 �elds (denoted by\� (imaginary)"), and real quadrati
 �elds (denoted by \� (real") for whi
hfa
toring and the quadrati
 �eld dis
rete logarithm problems all have the sameestimated running time. For 
omparison purposes, we also list the dis
riminantsizes re
ommended in [14℄, denoted by \� (imaginary, old)." Note that theseestimates were based on di�erent equivalent MIPS-years running times, as thelargest fa
toring e�ort at the time was RSA-512. In addition, they are based onan implementation of the imaginary quadrati
 �eld dis
rete logarithm algorithmfrom [17℄, whi
h is slower than the improved version from this paper. Conse-quently, our se
urity parameter estimates are slightly larger than those from[14℄. We note also that the re
ommended dis
riminant sizes are slightly smallerin the real 
ase, as the infrastru
ture dis
rete logarithm problem requires moretime to solve on average than the dis
rete logarithm in the imaginary 
ase.6 Con
lusionsIt is possible to produ
e more a

urate se
urity parameter estimates by takingmore fa
tors into a

ount as is done, for example, by Lenstra and Verheul [23℄, aswell as using a more a

urate performan
e measure than MIPS-year. However,our results nevertheless provide a good rough guideline on the required dis
rim-



Table 4. Se
urity Parameter EstimatesRSA � (imaginary, old) � (imaginary) � (real) Est. run time (MIPS-years)768 540 640 634 8:80� 1061024 687 798 792 1:07 � 10102048 1208 1348 1341 1:25 � 10193072 1665 1827 1818 4:74 � 10257680 0 3598 3586 1:06 � 104515360 0 5971 5957 1:01 � 1065inant sizes that is likely suÆ
iently a

urate in the inexa
t s
ien
e of predi
tingse
urity levels.It would also be of interest to 
ondu
t a new 
omparison of the eÆ
ien
y ofRSA as 
ompared to the 
ryptosystems based on quadrati
 �elds. Due to the dif-feren
es in the asymptoti
 
omplexities of integer fa
torization and the dis
retelogarithm problems in quadrati
 �elds, it is 
lear that there is a point wherethe 
ryptosystems based on quadrati
 �elds will be faster than RSA. However,ideal arithmeti
 is somewhat more 
ompli
ated than the simple integer arith-meti
 required for RSA, and in fa
t Hamdy's 
on
lusion [13℄ was that even withsmaller parameters, 
ryptography using quadrati
 �elds was not 
ompetitive atthe se
urity levels of interest. There have been a number of re
ent advan
es inideal arithmeti
 in both the imaginary and real 
ases (see, for example, [16℄ and[19℄) that warrant revisiting this issue.Referen
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